Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4961, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862514

RESUMO

Phases with spontaneous time-reversal ( T ) symmetry breaking are sought after for their anomalous physical properties, low-dissipation electronic and spin responses, and information-technology applications. Recently predicted altermagnetic phase features an unconventional and attractive combination of a strong T -symmetry breaking in the electronic structure and a zero or only weak-relativistic magnetization. In this work, we experimentally observe the anomalous Hall effect, a prominent representative of the T -symmetry breaking responses, in the absence of an external magnetic field in epitaxial thin-film Mn5Si3 with a vanishingly small net magnetic moment. By symmetry analysis and first-principles calculations we demonstrate that the unconventional d-wave altermagnetic phase is consistent with the experimental structural and magnetic characterization of the Mn5Si3 epilayers, and that the theoretical anomalous Hall conductivity generated by the phase is sizable, in agreement with experiment. An analogy with unconventional d-wave superconductivity suggests that our identification of a candidate of unconventional d-wave altermagnetism points towards a new chapter of research and applications of magnetic phases.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 6): 473-481, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820014

RESUMO

The magnetic structure of chromium arsenide CrAs is studied with neutron powder diffraction at ambient pressure in the temperature range 1.5-300 K as well as with neutron single-crystal diffraction at 2 K and 0.12 GPa. The material undergoes an anti-isostructural phase transition at TN = 267 K and atmospheric conditions, in which both orthorhombic phases have the same space-group symmetry (Pnma, Z = 4) but different distortions of the parent hexagonal structure of the NiAs type (P63/mmc, Z = 2). The magnetic structure below TN is incommensurate with the propagation vector k = (0, 0, kc). At ambient pressure, the component kc decreases from kc = 0.3807 (7) at 260 K to kc = 0.3531 (6) at 50 K. Below this temperature, it is basically constant. With increasing pressure at 2 K, kc is also constant within standard uncertainties [kc = 0.353 (2)]. For the analysis of the magnetic structure, a group-theoretical approach based on the space group of the nuclear structure and its subgroups is used. To avoid falling into false minima in the refinements, a random search for magnetic moments in the models is implemented. In the literature, the magnetic structure has been determined on the basis of powder diffraction data as a double helix propagating along the c axis. Although this double-helical model leads to satisfactory agreement factors for our powder data, it does not reproduce the intensities of the magnetic satellite reflections measured on single-crystal data in a satisfactory way and can therefore be discarded. Instead, several other models are found that lead to better agreement. Each of them is spiral-like with directional components in all three directions and with no spin-density wave character that would cause a non-constant magnetic moment. In all these models, the ordering of the spins is neither a pure helix nor a pure cycloid. Instead, the unit vectors of the spin rotation planes make an angle α, 0° < α < 90°, with respect to the c* direction. The model in superspace group P21.1'(α0γ)0s yields the best agreement factors in the refinements of the neutron single-crystal and powder diffraction data. This model is unique as it is the only one in which all the magnetic moments rotate with the same chirality.

3.
Inorg Chem ; 62(19): 7304-7314, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37125995

RESUMO

The ternary phase with the composition Ni3InSb has been synthesized by high-temperature synthesis and structurally characterized by a combination of X-ray analysis, neutron diffraction analysis, and theoretical calculations. The structure of Ni3InSb crystallizes in the orthorhombic space group Pnma with lattice constants a = 7.111(3) Å, b = 5.193(3) Å, and c = 8.2113(2) Å. The crystal structure contains ∼20 atoms in its unit cell, which are distributed over four crystallographically independent positions (two Ni, one In, and one Sb). The crystal structure can be considered as a ternary substitutional variant of Ni3Sn2 (Pnma, no. 62), where a trivalent In and a pentavalent Sb orderly occupy two tetravalent Sn sites of Ni3Sn2. This site decoration pattern of two neighboring elements, In and Sb, is unique and confirmed by first principles total energy calculations. The crystal structure can be described by two building units: Ni2Sb (building unit of Ni2In) and NiIn (NiAs-type). They alternate in the crystal structure and form infinite ac-slabs (puckered), and the slabs are stacked along [010]. A triangular lattice formed by Ni atoms indicates the existence of a geometrically frustrated structure. The calculated density of states and crystal orbital Hamilton population enlighten the stability and bonding characteristics of the structure. The temperature-dependent neutron diffraction study down to 5 K reveals that the crystal structure remains in the same orthorhombic symmetry with a weak anomaly in the lattice parameters at ∼100 K. Detailed temperature- and magnetic field-dependent magnetic properties of the title phase Ni3InSb show spin-glass- or spin-disorder-like behaviors below ∼300 K with an unusual magnetic behavior below 100 K, where an enhancement of magnetization with a decrease of the coercive field has been found.

4.
J Phys Chem Lett ; 14(13): 3111-3119, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36951481

RESUMO

Despite 70 years of research on metallocenes and their applications, there are still unresolved regions in its phase diagram of the prototypic sandwich compound, ferrocene Fe2+[C5H5]-2 (FeCp2), and its molecular 5-fold symmetry cannot be reconciled with the dielectric response of this crystal. We found a new phase I″ of ferrocene, which reveals the relationships between the molecular conformation, intermolecular interactions, and electric permittivity of this compound. Between 172.8 and 163.5 K, the conformational disorder of ferrocene molecules transforms into the incommensurate modulation. The structure of phase I″ is described in the (3+2)-dimensional superspace, where the molecular conformations, rotations and inclinations of the Cp rings, molecular tilts, and displacements of the Fe2+ cations, as well as the CH···π bonds in the crystal environment, are modulated. These geometric changes combine into the FeCp2 bending distortion, breaking the 5-fold symmetry and generating waves of molecular dipole moments with their amplitudes approaching 4 × 10-30 C·m.

5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 2): 104-113, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36920876

RESUMO

The structures and phase transitions to incommensurate structures in Rb2V3O8 and K2V3O8 mixed-valence vanadate fresnoites are studied with synchrotron single-crystal diffraction at low temperatures and ambient pressure. Although mixed satellite reflections are absent, the modulated structure of K2V3O8 below 115 K is better described in (3 + 2)- than in (3 + 1)-dimensional space. The geometries of the VO4 and VO5 building units are rigid and it is mainly slight rotations of these polyhedra and small variation of the intermediate K-O distances that are modulated. Prolonged exposure to the high-brilliance synchrotron beam suppresses the incommensurate phase. The previously postulated phase transition to the incommensurate phase in Rb2V3O8 at 270 K was not observed. One of the reasons could be that the intense radiation also affects the modulation in this material. Strategies to collect and analyse single-crystal diffraction data measured with very intense synchrotron radiation using modern low-noise pixel area detectors are discussed.

6.
Materials (Basel) ; 15(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431543

RESUMO

Iron phosphate materials have attracted a lot of attention due to their potential as cathode materials for lithium-ion rechargeable batteries. It has been shown that lithium insertion or extraction depends on the Fe mixed valence and reduction or oxidation of the Fe ions' valences. In this paper, we report a new synthesis method for the Fe3(PO3OH)4(H2O)4 mixed valence iron phosphate. In addition, we perform temperature-dependent measurements of structural and physical properties in order to obtain an understanding of electronic-structural interplay in this compound. Scanning electron microscope images show needle-like single crystals of 50 µm to 200 µm length which are stable up to approximately 200 °C, as revealed by thermogravimetric analysis. The crystal structure of Fe3(PO3OH)4(H2O)4 single crystals has been determined in the temperature range of 90 K to 470 K. A monoclinic isostructural phase transition was found at ~213 K, with unit cell volume doubling in the low temperature phase. While the local environment of the Fe2+ ions does not change significantly across the structural phase transition, small antiphase rotations occur for the Fe3+ octahedra, implying some kind of electronic order. These results are corroborated by first principle calculations within density functional theory, which also point to ordering of the electronic degrees of freedom across the transition. The structural phase transition is confirmed by specific heat measurements. Moreover, hints of 3D antiferromagnetic ordering appear below ~11 K in the magnetic susceptibility measurements. Room temperature visible light absorption is consistent with the Fe2+/Fe3+ mixed valence.

8.
Nat Commun ; 13(1): 5810, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192395

RESUMO

The operation of lithium-ion batteries involves electron removal from and filling into the redox orbitals of cathode materials, experimentally probing the orbital electron population thus is highly desirable to resolve the redox processes and charge compensation mechanism. Here, we combine quantitative convergent-beam electron diffraction with high-energy synchrotron powder X-ray diffraction to quantify the orbital populations of Co and O in the archetypal cathode material LiCoO2. The results indicate that removing Li ions from LiCoO2 decreases Co t2g orbital population, and the intensified covalency of Co-O bond upon delithiation enables charge transfer from O 2p orbital to Co eg orbital, leading to increased Co eg orbital population and oxygen oxidation. Theoretical calculations verify these experimental findings, which not only provide an intuitive picture of the redox reaction process in real space, but also offer a guidance for designing high-capacity electrodes by mediating the covalency of the TM-O interactions.

9.
IUCrJ ; 9(Pt 5): 544-550, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36071811

RESUMO

The structure and stoichiometry of a new metal-free and ammonium-free compound [dabcoH2]2+H3O+Br- 3 (where [dabcoH2]2+ = 1,4-di-aza-bicyclo-[2.2.2]octane dication) correspond to the general formula ABX 3 characteristic of perovskites. In enantiomorphic trigonal polymorph α of [dabcoH2]2+H3O+Br- 3, the corner-sharing [H3O]Br6 octahedra combine into a 3D framework embedding [dabcoH2]2+ dications in pseudo-cubic cages. In the more dense polymorph ß, the face-sharing [H3O]Br6 octahedra form 1D polyanionic columns separated by [dabcoH2]2+ dications. These different topologies correlate with different crystal fields around the cations and their different disorder types: orientational disorders of [dabcoH2]2+ dications and H3O+ cations in polymorph α and positional disorder of [H3O]+ cations in polymorph ß. The orientational disorder increases the lengths of OH⋯Br hydrogen bonds in polymorph α, but NH⋯Br distances of ordered dabcoH2 dications are longer in polymorph ß. The presence of polar [H3O]+ cations in [dabcoH2]2+H3O+Br- 3 polymorphs offers additional polarizability of the centres compared with analogous metal-free [dabcoH2]2+[NH4]+Br- 3 perovskite.

10.
J Appl Crystallogr ; 54(Pt 6): 1656-1663, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34963763

RESUMO

In this work, the structures of chemically related uranyl-oxide minerals agrinierite and rameauite have been revisited and some corrections to the available structure data are provided. Both structures were found to be twinned. The two minerals are chemically similar, and though their structures differ considerably, their unit-cell metrics are similar. Agrinierite was found to be twinned by metric merohedry (diffraction type I), whereas the structure of rameauite is twinned by reticular merohedry (diffraction type II). The twinning of the monoclinic unit cells (true cells) leads to pseudo-orthorhombic or pseudo-tetragonal supercells in the single-crystal diffraction patterns of both minerals. According to the new data and refinement, agrinierite is monoclinic (space group Cm), with a = 14.069 (3), b = 14.220 (3), c = 13.967 (3) Å, ß = 120.24 (12)° and V = 2414.2 (12) Å3 (Z = 2). The twinning can be expressed as a mirror in (101) (apart from the inversion twin), which leads to a supercell with a = 14.121, b = 14.276, c = 24.221 Šand V = 2 × 2441 Å3, which is F centered. The new structure refinement converged to R = 3.54% for 6545 unique observed reflections with I > 3σ(I) and GOF = 1.07. Rameauite is also monoclinic (space group Cc), with a = 13.947 (3), b = 14.300 (3), c = 13.888 (3) Å, ß = 118.50 (3)° and V = 2434.3 (11) Å3 (Z = 2). The twinning can be expressed as a mirror in (101) (apart from the inversion twin), which leads to a supercell with a = 14.223, b = 14.300, c = 23.921 Šand V = 2 × 2434 Å3, which is C centered. The new structure refinement of rameauite converged to R = 4.23% for 2344 unique observed reflections with I > 3σ(I) and GOF = 1.48. The current investigation documented how peculiar twinning can be, not only for this group of minerals, and how care must be taken in handling the data biased by twinning.

11.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 77(Pt 3): 378-383, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34096520

RESUMO

Revisiting the structure of uranyl arsenate mineral hügelite provided some corrections to the available structural data. The previous twinning model (by reticular merohedry) in hügelite has been corrected. Twinning of the monoclinic unit cell [a = 7.0189 (7) Å, b = 17.1374 (10) Å, c = 8.1310 (10) Šand ß = 108.904 (10)°], which can be expressed as a mirror in [100], leads to a pseudo-orthorhombic unit cell (a = 7.019 Å, b = 17.137 Å, c = 61.539 Šand ß = 90.02°), which is eight times larger, with respect to the unit-cell volume, than a real cell. Moreover, the unit cell of chosen here and the unit cell given by the previous structure description both lead to the same supercell. A new structure refinement undertaken on an untwinned crystal of hügelite resulted in R = 4.82% for 12 864 reflections with Iobs > 3σ(I) and GOF = 1.12. The hydrogen-bonding scheme has been proposed for hügelite for the first time.

12.
Inorg Chem ; 59(24): 17896-17905, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33245662

RESUMO

The present work is dedicated to characterization of the structural phase transition and incommensurate magnetic structure of the [CH3NH3][Ni(COOH)3] (1) perovskite-like metal-organic compound. The structural and magnetic characterization has been performed through variable-temperature single-crystal and powder neutron diffraction. Compound 1 crystallizes in the orthorhombic Pnma space group at room temperature. Below 84 K, a new phase has been observed. The occurrence of new reflections, which can be indexed with a wavevector along the c axis [q = 0.1426(2)c*], suggests the occurrence of an incommensurately modulated crystal structure. The structure was determined using the superspace group formalism on the Pnma(00γ)0s0 space group. This incommensurate phase remains unchanged with a decrease of the temperature up to the base temperature (ca. 2 K). Moreover, the magnetic susceptibility data, collected under zero-field-cooled and field-cooled conditions at different applied magnetic fields, show that compound 1 exhibits antiferromagnetic behavior below 34 K. In the current paper, we have confirmed that compound 1 presents the coexistence of nuclear and proper magnetic incommensurability below TN.

13.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 3): 450-468, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831263

RESUMO

The structure of 4-methyl-3-[(tetrahydro-2H-pyran-2-yl)oxy]thiazole-2(3H)-thione (MTTOTHP) was investigated using X-ray diffraction and computational chemistry methods for determining properties of the nitrogen-oxygen bond, which is the least stable entity upon photochemical excitation. Experimentally measured structure factors have been used to determine and characterize charge density via the multipole model (MM) and the maximum entropy method (MEM). Theoretical investigation of the electron density and the electronic structure has been performed in the finite basis set density functional theory (DFT) framework. Quantum Theory of Atoms In Molecules (QTAIM), deformation densities and Laplacians maps have been used to compare theoretical and experimental results. MM experimental results and predictions from theory differ with respect to the sign and/or magnitude of the Laplacian at the N-O bond critical point (BCP), depending on the treatment of n values of the MM radial functions. Such Laplacian differences in the N-O bond case are discussed with respect to a lack of flexibility in the MM radial functions also reported by Rykounov et al. [Acta Cryst. (2011), B67, 425-436]. BCP Hessian eigenvalues show qualitatively matching results between MM and DFT. In addition, the theoretical analysis used domain-averaged fermi holes (DAFH), natural bond orbital (NBO) analysis and localized (LOC) orbitals to characterize the N-O bond as a single σ bond with marginal π character. Hirshfeld atom refinement (HAR) has been employed to compare to the MM refinement results and/or neutron dataset C-H bond lengths and to crystal or single molecule geometry optimizations, including considerations of anisotropy of H atoms. Our findings help to understand properties of molecules like MTTOTHP as progenitors of free oxygen radicals.

14.
Science ; 367(6483): 1218-1223, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32165582

RESUMO

Spin ices are exotic phases of matter characterized by frustrated spins obeying local "ice rules," in analogy with the electric dipoles in water ice. In two dimensions, one can similarly define ice rules for in-plane Ising-like spins arranged on a kagome lattice. These ice rules require each triangle plaquette to have a single monopole and can lead to different types of orders and excitations. Using experimental and theoretical approaches including magnetometry, thermodynamic measurements, neutron scattering, and Monte Carlo simulations, we establish HoAgGe as a crystalline (i.e., nonartificial) system that realizes the kagome spin ice state. The system features a variety of partially and fully ordered states and a sequence of field-induced phases at low temperatures, all consistent with the kagome ice rule.

15.
Acta Crystallogr D Struct Biol ; 75(Pt 9): 852-860, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31478908

RESUMO

Theoretically, crystals with supercells exist at a unique crossroads where they can be considered as either a large unit cell with closely spaced reflections in reciprocal space or a higher dimensional superspace with a modulation that is commensurate with the supercell. In the latter case, the structure would be defined as an average structure with functions representing a modulation to determine the atomic location in 3D space. Here, a model protein structure and simulated diffraction data were used to investigate the possibility of solving a real incommensurately modulated protein crystal using a supercell approximation. In this way, the answer was known and the refinement method could be tested. Firstly, an average structure was solved by using the `main' reflections, which represent the subset of the reflections that belong to the subcell and in general are more intense than the `satellite' reflections. The average structure was then expanded to create a supercell and refined using all of the reflections. Surprisingly, the refined solution did not match the expected solution, even though the statistics were excellent. Interestingly, the corresponding superspace group had multiple 3D daughter supercell space groups as possibilities, and it was one of the alternate daughter space groups that the refinement locked in on. The lessons learned here will be applied to a real incommensurately modulated profilin-actin crystal that has the same superspace group.


Assuntos
Actinas/química , Cristalografia por Raios X/métodos , Profilinas/química , Modelos Moleculares , Conformação Proteica
16.
RSC Adv ; 9(69): 40708-40726, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-35542667

RESUMO

The full crystal structure of the copper-uranyl tetrahydroxide mineral (vandenbrandeite), including the positions of the hydrogen atoms, is established by the first time from X-ray diffraction data taken from a natural crystal sample from the Musonoi Mine, Katanga Province, Democratic Republic of Congo. The structure is verified using first-principles solid-state methods. From the optimized structure, the mechanical and dynamical stability of vandenbrandeite is studied and a rich set of mechanical properties are determined. The Raman spectrum is recorded from the natural sample and determined theoretically. Since both spectra have a high-degree of consistence, all spectral bands are rigorously assigned using a theoretical normal-coordinate analysis. Two bands in the Raman spectra, located at 2327 and 1604 cm-1, are recognized as overtones and a band at 1554 cm-1 is identified as a combination band. The fundamental thermodynamic functions of vandenbrandeite are computed as a function of temperature using phonon calculations. These properties, unknown so far, are key-parameters for the performance-assessment of geological repositories for storage of radioactive nuclear waste and for understanding the paragenetic sequence of minerals arising from the corrosion of uranium deposits. The thermodynamic functions are used here to determine the thermodynamic properties of formation of vandenbrandeite in terms of the elements and the Gibbs free-energies and reaction constants for a series of reactions involving vandenbrandeite and a representative subset of the most important secondary phases of spent nuclear fuel. Finally, from the thermodynamic data of these reactions, the relative stability of vandenbrandeite with respect to these phases as a function of temperature and in the presence of hydrogen peroxide is evaluated. Vandenbrandeite is shown to be highly stable under the simultaneous presence of water and hydrogen peroxide.

17.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 5): 836-843, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28980987

RESUMO

Morpholinium tetrafluoroborate, [C4H10NO]+[BF4]-, belongs to a class of ferroelectric compounds ABX4. However, [C4H10NO]+[BF4]- does not develop ferroelectric properties because the incommensurate phase below Tc,I = 153 K is centrosymmetric with superspace group Pnam(σ100)00s and σ1 = 0.42193 (12) at T = 130 K; the threefold superstructure below Tc,II = 117-118 K possesses the acentric but non-ferroelectric space group P212121. At ambient conditions, [C4H10NO]+[BF4]- comprises orientationally disordered [BF4]- anions accommodated in cavities between four morpholinium cations. A structure model for the incommensurately modulated phase, which involves modulated orientational ordering of [BF4]- together with modulated distortions and displacements of the morpholinium ions is reported. A mechanism is proposed for the phase transitions, whereby at low temperatures morpholinium cations are shaped around the tetrafluoroborate anion in order to optimize the interactions with one orientation of this anion and, thus, forcing [BF4]- into this orientation. This mechanism is essentially different from a pure order-disorder phase transition. It is supported by consideration of the transition entropy. The difference in configurational entropy between the disordered and incommensurate phases has been computed from the structure models. It is shown to be much smaller than the experimental transition entropy reported by Owczarek et al. [Chem. Phys. (2011), 381, 11-20]. These features show that the order-disorder contribution is only a minor contribution to the transition entropy and that other factors, such as conformational changes, play a larger role in the phase transitions.

18.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 5): 856-862, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28980989

RESUMO

Parabutlerite, orthorhombic FeIIISO4(OH)·2H2O, has been reinvestigated using single-crystal X-ray diffraction. The structure of parabutlerite is commensurately modulated, with a = 20.0789 (8), b = 7.4024 (7), c = 7.2294 (15) Šand q = 0.4b*. The superstructure has been determined, using a superspace approach, as having the superspace group Pnma(0ß0)s0s and t0 = 1/20, and refined to R = 0.0295 for 2392 main reflections with I > 3σ(I). The structure consists of infinite chains of Fe octahedra that are linked via vertices (OH groups); these chains are encased from both sides by SO4 tetrahedra. The displacive modulation of atoms in parabutlerite is connected with a tilt of the chains around the b axis towards the adjacent chains due to the accommodation of an energetically more favorable hydrogen-bond geometry.

19.
Sci Rep ; 7(1): 3727, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623293

RESUMO

Intuitively scientists accept that order can emerge from disorder and a significant amount of effort has been devoted over many years to demonstrate this. In metallic alloys and oxides, disorder at the atomic scale is the result of occupation at equivalent atomic positions by different atoms which leads to the material exhibiting a fully random or modulated scattering pattern. This arrangement has a substantial influence on the material's properties, for example ionic conductivity. However it is generally accepted that oxides, such as defect fluorite as used for nuclear waste immobilization matrices and fuel cells, are the result of disorder at the atomic scale. To investigate how order at the atomic scale induces disorder at a larger scale length, we have applied different techniques to study the atomic composition of a homogeneous La 2 Zr 2 O 7 pyrochlore, a textbook example of such a structure. Here we demonstrate that a pyrochlore, which is considered to be defect fluorite, is the result of intricate disorder due to a random distribution of fully ordered nano-domains. Our investigation provides new insight into the order disorder transformations in complex materials with regards to domain formation, resulting in a concord of chemistry with crystallography illustrating that order can induce disorder.

20.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 3): 369-376, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572547

RESUMO

The structure of meneghinite (CuPb13Sb7S24), from the Bottino mine in the Apuan Alps (Italy), has been solved and refined as an incommensurate structure in four-dimensional superspace. The structure is orthorhombic, superspace group Pnma(0ß0)00s, cell parameters a = 24.0549 (3), b = 4.1291 (6), c = 11.3361 (16) Å, modulation vector q = 0.5433 (4)b*. The structure was refined from 6604 reflections to a final R = 0.0479. The model includes modulation of both atomic positions and displacement parameters, as well as occupational waves. The driving forces stabilizing the modulated structure of meneghinite are linked to the occupation modulation of Cu and some of the Pb atoms. As a consequence of the Cu/[] and Pb/Sb modulations, three- to sevenfold coordinations of the M cations (Pb/Sb) occur in different parts of the structure. The almost bimodal distribution of the occupation of Cu/[] and Pb/Sb at M5 conforms with the coupled substitution Sb3+ + [] → Pb2+ + Cu+, thus corroborating the hypothesis deduced previously for the incorporation of copper in the meneghinite structure. The very small departure (∼0.54 versus 0.50) from the commensurate value of the modulation raises the question of whether other sulfosalts considered superstructures have been properly described, and, in this light, if incommensurate modulation in sulfosalts could be much more common than thought.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...