Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Gait Posture ; 111: 65-74, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653178

RESUMO

BACKGROUND: Clinical gait analysis (CGA) is a systematic approach to comprehensively evaluate gait patterns, quantify impairments, plan targeted interventions, and evaluate the impact of interventions. However, international standards for CGA are currently lacking, resulting in various national initiatives. Standards are important to ensure safe and effective healthcare practices and to enable evidence-based clinical decision-making, facilitating interoperability, and reimbursement under national healthcare policies. Collaborative clinical and research work between European countries would benefit from common standards. RESEARCH OBJECTIVE: This study aimed to review the current laboratory practices for CGA in Europe. METHODS: A comprehensive survey was conducted by the European Society for Movement Analysis in Adults and Children (ESMAC), in close collaboration with the European national societies. The survey involved 97 gait laboratories across 16 countries. The survey assessed several aspects related to CGA, including equipment used, data collection, processing, and reporting methods. RESULTS: There was a consensus between laboratories concerning the data collected during CGA. The Conventional Gait Model (CGM) was the most used biomechanical model for calculating kinematics and kinetics. Respondents also reported the use of video recording, 3D motion capture systems, force plates, and surface electromyography. While there was a consensus on the reporting of CGA data, variations were reported in training, documentation, data preprocessing and equipment maintenance practices. SIGNIFICANCE: The findings of this study will serve as a foundation for the development of standardized guidelines for CGA in Europe.

3.
Front Neurol ; 14: 1221656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146442

RESUMO

The scientific literature on poststroke rehabilitation is remarkably vast. Over the last decades, dozens of rehabilitation approaches have been investigated. However, sometimes it is challenging to trace new experimental interventions back to some of the known models of motor control and sensorimotor learning. This scoping review aimed to investigate motor control models' diffusion among the literature on motor recovery after stroke. We performed a literature search on Medline, Cochrane, Web of Science, Embase, and Scopus databases. The last search was conducted in September 2023. This scoping review included full-text articles published in English in peer-reviewed journals that provided rehabilitation interventions based on motor control or motor learning frameworks for at least one individual with stroke. For each study, we identified the theoretical framework the authors used to design the experimental treatment. To this aim, we used a previously proposed classification of the known models of motor control, dividing them into the following categories: neuroanatomy, robotics, self-organization, and ecological context. In total, 2,185 studies were originally considered in this scoping review. After the screening process, we included and analyzed 45 studies: 20 studies were randomized controlled trials, 12 were case series, 4 were case reports, 8 were observational longitudinal pilot studies, and 1 was an uncontrolled trial. Only 10 studies explicitly declared the reference theoretical model. Considering their classification, 21 studies referred to the robotics motor control model, 12 to the self-organization model, 8 to the neuroanatomy model, and 4 to the ecological model. Our results showed that most of the rehabilitative interventions purposed in stroke rehabilitation have no clear theoretical bases on motor control and motor learning models. We suggest this is an issue that deserves attention when designing new experimental interventions in stroke rehabilitation.

4.
Brain Sci ; 13(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36672074

RESUMO

BACKGROUND: Balance impairment is a common disability in post-stroke survivors, leading to reduced mobility and increased fall risk. Robotic gait training (RAGT) is largely used, along with traditional training. There is, however, no strong evidence about RAGT superiority, especially on balance. This study aims to determine RAGT efficacy on balance of post-stroke survivors. METHODS: PubMed, Cochrane Library, and PeDRO databases were investigated. Randomized clinical trials evaluating RAGT efficacy on post-stroke survivor balance with Berg Balance Scale (BBS) or Timed Up and Go test (TUG) were searched. Meta-regression analyses were performed, considering weekly sessions, single-session duration, and robotic device used. RESULTS: A total of 18 trials have been included. BBS pre-post treatment mean difference is higher in RAGT-treated patients, with a pMD of 2.17 (95% CI 0.79; 3.55). TUG pre-post mean difference is in favor of RAGT, but not statistically, with a pMD of -0.62 (95%CI - 3.66; 2.43). Meta-regression analyses showed no relevant association, except for TUG and treatment duration (ß = -1.019, 95% CI - 1.827; -0.210, p-value = 0.0135). CONCLUSIONS: RAGT efficacy is equal to traditional therapy, while the combination of the two seems to lead to better outcomes than each individually performed. Robot-assisted balance training should be the focus of experimentation in the following years, given the great results in the first available trials. Given the massive heterogeneity of included patients, trials with more strict inclusion criteria (especially time from stroke) must be performed to finally define if and when RAGT is superior to traditional therapy.

5.
NeuroRehabilitation ; 51(4): 559-576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530097

RESUMO

BACKGROUND: Robot-assisted arm therapy (RAT) has been used mainly in stroke rehabilitation in the last 20 years with rising expectations and growing evidence summarized in systematic reviews (SRs). OBJECTIVE: The aim of this study is to provide an overview of SRs about the effectiveness, within the ICF domains, and safety of RAT in the rehabilitation of adult with stroke compared to other treatments. METHODS: The search strategy was conducted using search strings adapted explicitly for each database. A screening base on title and abstract was realized to find all the potentially relevant studies. The methodological quality of the included SRs was assessed using AMSTAR-2. A pre-determined standardized form was used to realize the data extraction. RESULTS: 18 SRs were included in this overview. Generally, positive effects from the RAT were found for motor function and muscle strength, whereas there is no agreement for muscle tone effects. No effect was found for pain, and only a SR reported the positive impact of RAT in daily living activity. CONCLUSION: RAT can be considered a valuable option to increase motor function and muscle strength after stroke. However, the poor quality of most of the included SRs could limit the certainty around the results.


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Braço , Revisões Sistemáticas como Assunto
6.
NeuroRehabilitation ; 51(4): 665-679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530098

RESUMO

BACKGROUND: The use of robotic technologies in pediatric rehabilitation has seen a large increase, but with a lack of a comprehensive framework about their effectiveness. OBJECTIVE: An Italian Consensus Conference has been promoted to develop recommendations on these technologies: definitions and classification criteria of devices, indications and limits of their use in neurological diseases, theoretical models, ethical and legal implications. In this paper, we present the results for the pediatric age. METHODS: A systematic search on Cochrane Library, PEDro and PubMed was performed. Papers published up to March 1st, 2020, in English, were included and analyzed using the methodology of the Centre for Evidence-Based Medicine in Oxford, AMSTAR2 and PEDro scales for systematic reviews and RCT, respectively. RESULTS: Some positives aspects emerged in the area of gait: an increased number of children reaching the stance, an improvement in walking distance, speed and endurance. Critical aspects include the heterogeneity of the studied cases, measurements and training protocols. CONCLUSION: Many studies demonstrate the benefits of robotic training in developmental age. However, it is necessary to increase the number of trials to achieve greater homogeneity between protocols and to confirm the effectiveness of pediatric robotic rehabilitation.


Assuntos
Crianças com Deficiência , Doenças do Sistema Nervoso , Robótica , Criança , Humanos , Marcha , Robótica/métodos , Doenças do Sistema Nervoso/reabilitação , Crianças com Deficiência/reabilitação
7.
NeuroRehabilitation ; 51(4): 681-691, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530100

RESUMO

BACKGROUND: Robot-based treatments are developing in neurorehabilitation settings. Recently, the Italian National Health Systems recognized robot-based rehabilitation as a refundable service. Thus, the Italian neurorehabilitation community promoted a national consensus on this topic. OBJECTIVE: To conceptualize undisclosed perspectives for research and applications of robotics for neurorehabilitation, based on a qualitative synthesis of reference theoretical models. METHODS: A scoping review was carried out based on a specific question from the consensus Jury. A foreground search strategy was developed on theoretical models (context) of robot-based rehabilitation (exposure), in neurological patients (population). PubMed and EMBASE® databases were searched and studies on theoretical models of motor control, neurobiology of recovery, human-robot interaction and economic sustainability were included, while experimental studies not aimed to investigate theoretical frameworks, or considering prosthetics, were excluded. RESULTS: Overall, 3699 records were screened and finally 9 papers included according to inclusion and exclusion criteria. According to the population investigated, structured information on theoretical models and indications for future research was summarized in a synoptic table. CONCLUSION: The main indication from the Italian consensus on robotics in neurorehabilitation is the priority to design research studies aimed to investigate the role of robotic and electromechanical devices in promoting neuroplasticity.


Assuntos
Membros Artificiais , Reabilitação Neurológica , Robótica , Reabilitação do Acidente Vascular Cerebral , Humanos , Itália
8.
NeuroRehabilitation ; 51(4): 541-558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530099

RESUMO

BACKGROUND: Robotic therapy (RT) has been internationally recognized for the motor rehabilitation of the upper limb. Although it seems that RT can stimulate and promote neuroplasticity, the effectiveness of robotics in restoring cognitive deficits has been considered only in a few recent studies. OBJECTIVE: To verify whether, in the current state of the literature, cognitive measures are used as inclusion or exclusion criteria and/or outcomes measures in robotic upper limb rehabilitation in stroke patients. METHODS: The systematic review was conducted according to PRISMA guidelines. Studies eligible were identified through PubMed/MEDLINE and Web of Science from inception to March 2021. RESULTS: Eighty-one studies were considered in this systematic review. Seventy-three studies have at least a cognitive inclusion or exclusion criteria, while only seven studies assessed cognitive outcomes. CONCLUSION: Despite the high presence of cognitive instruments used for inclusion/exclusion criteria their heterogeneity did not allow the identification of a guideline for the evaluation of patients in different stroke stages. Therefore, although the heterogeneity and the low percentage of studies that included cognitive outcomes, seemed that the latter were positively influenced by RT in post-stroke rehabilitation. Future larger RCTs are needed to outline which cognitive scales are most suitable and their cut-off, as well as what cognitive outcome measures to use in the various stages of post-stroke rehabilitation.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Atividades Cotidianas , Extremidade Superior , Cognição , Recuperação de Função Fisiológica
9.
NeuroRehabilitation ; 51(4): 595-608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36502342

RESUMO

BACKGROUND: The recovery of walking after stroke is a priority goal for recovering autonomy. In the last years robotic systems employed for Robotic Assisted Gait Training (RAGT) were developed. However, literature and clinical practice did not offer standardized RAGT protocol or pattern of evaluation scales. OBJECTIVE: This systematic review aimed to summarize the available evidence on the use of RAGT in post-stroke, following the CICERONE Consensus indications. METHODS: The literature search was conducted on PubMed, Cochrane Library and PEDro, including studies with the following criteria: 1) adult post-stroke survivors with gait disability in acute/subacute/chronic phase; 2) RAGT as intervention; 3) any comparators; 4) outcome regarding impairment, activity, and participation; 5) both primary studies and reviews. RESULTS: Sixty-one articles were selected. Data about characteristics of patients, level of disability, robotic devices used, RAGT protocols, outcome measures, and level of evidence were extracted. CONCLUSION: It is possible to identify robotic devices that are more suitable for specific phase disease and level of disability, but we identified significant variability in dose and protocols. RAGT as an add-on treatment seemed to be prevalent. Further studies are needed to investigate the outcomes achieved as a function of RAGT doses delivered.


Assuntos
Transtornos Neurológicos da Marcha , Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Adulto , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Transtornos Neurológicos da Marcha/etiologia , Marcha , Acidente Vascular Cerebral/complicações
10.
NeuroRehabilitation ; 51(4): 609-647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36502343

RESUMO

BACKGROUND: Many robots are available for gait rehabilitation (BWSTRT and ORET) and their application in persons with SCI allowed an improvement of walking function. OBJECTIVE: The aim of the study is to compare the effects of different robotic exoskeletons gait training in persons with different SCI level and severity. METHODS: Sixty-two studies were included in this systematic review; the study quality was assessed according to GRADE and PEDro's scale. RESULTS: Quality assessment of included studies (n = 62) demonstrated a prevalence of evidence level 2; the quality of the studies was higher for BWSTRT (excellent and good) than for ORET (fair and good). Almost all persons recruited for BWSTRT had an incomplete SCI; both complete and incomplete SCI were recruited for ORET. The SCI lesion level in the persons recruited for BWSTRT are from cervical to sacral; mainly from thoracic to sacral for ORET; a high representation of AIS D lesion resulted both for BWSTRT (30%) and for ORET (45%). The walking performance, tested with 10MWT, 6MWT, TUG and WISCI, improved after exoskeleton training in persons with incomplete SCI lesions, when at least 20 sessions were applied. Persons with complete SCI lesions improved the dexterity in walking with exoskeleton, but did not recover independent walking function; symptoms such as spasticity, pain and cardiovascular endurance improved. CONCLUSION: Different exoskeletons are available for walking rehabilitation in persons with SCI. The choice about the kind of robotic gait training should be addressed on the basis of the lesion severity and the possible comorbidities.


Assuntos
Exoesqueleto Energizado , Robótica , Traumatismos da Medula Espinal , Humanos , Marcha , Traumatismos da Medula Espinal/reabilitação , Caminhada
11.
Front Hum Neurosci ; 16: 797282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992946

RESUMO

Background: Gait Analysis of healthy people, imitating pathological conditions while walking, has increased our understanding of biomechanical factors. The influence of the pelvis as a biomechanical constraint during gait is not specifically studied. How could mimicking a pelvic attitude influence the dynamic mechanical interaction of the body segments? We proposed an investigation of the pelvic attitude role on the gait pattern of typically developed people when they mimicked pelvic anteversion and posteroversion. Materials and methods: Seventeen healthy volunteers were enrolled in this study (mean age 24.4 ± 5.5). They simulated a pelvic anteversion and posteroversion during walking, exaggerating these postures as much as possible. 3D gait analysis was conducted using an optoelectronic system with eight cameras (Vicon MX, Oxford, United Kingdom) and two force plates (AMTI, Or-6, Watertown, MA, United States). The kinematic, kinetic, and spatio-temporal parameters were compared between the three walking conditions (anteversion, posteroversion, and normal gait). Results: In Pelvic Anteversion gait (PA) we found: increased hip flexion (p < 0.0001), increased knee flexion during stance (p = 0.02), and reduction of ankle flexion-extension Range of Motion (RoM) compared with Pelvic Normal gait (PN). In Pelvic Posteroversion gait (PP) compared with PN, we found: decreased hip flexion-extension RoM (p < 0.01) with a tendency to hip extension, decreased knee maximum extension in stance (p = 0.033), and increased ankle maximum dorsiflexion in stance (p = 0.002). Conclusion: The configuration of PA contains gait similarities and differences when compared with pathologic gait where there is an anteversion as seen in children with Cerebral Palsy (CP) or Duchenne Muscular Dystrophy (DMD). Similarly, attitudes of PP have been described in patients with Charcot-Marie-Tooth Syndrome (CMT) or patients who have undergone Pelvic Osteotomy (PO). Understanding the dynamic biomechanical constraints is essential to the assessment of pathological behavior. The central nervous system adapts motor behavior in interaction with body constraints and available resources.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35564920

RESUMO

Background: Hand trauma requires specific rehabilitation protocol depending on the different structures involved. According to type of surgical intervention, and for monitoring pain and edema, post-operative rehabilitation of a hand that has experienced trauma involves different timings for immobilization. Several protocols have been used to reduce immobilization time, and various techniques and methods are adopted, depending on the structures involved. Objective: To measure the effects of mirror neurons-based rehabilitation techniques in hand injuries throughout a systematic review and meta-analysis. Methods: The protocol was accepted in PROSPERO database. A literature search was conducted in Cinahl, Scopus, Medline, PEDro, OTseeker. Two authors independently identified eligible studies, based on predefined inclusion criteria, and extracted the data. RCT quality was assessed using the JADAD scale. Results: Seventy-nine suitable studies were screened, and only eleven were included for qualitative synthesis, while four studies were selected for quantitative analysis. Four studies were case reports/series, and seven were RCTs. Nine investigate the effect of Mirror Therapy and two the effect of Motor Imagery. Quantitative analyses revealed Mirror Therapy as effective for hand function recovery (mean difference = −14.80 95% Confidence Interval (CI) = −17.22, −12.38) (p < 0.00001) in the short term, as well as in long follow-up groups (mean difference = −13.11 95% Confidence Interval (CI) = −17.53, −8.69) (p < 0.00001). Clinical, but not statistical, efficacy was found for manual dexterity (p = 0.15), while no benefit was reported for range of motion. Conclusions: Mirror neurons-based rehabilitation techniques, combined with conventional occupational and physical therapy, can be a useful approach in hand trauma. Mirror therapy seems to be effective for hand function recovery, but, for motor imagery and action observation, there is not sufficient evidence to recommend its use. Further research on the efficacy of the mirror neurons-based technique in hand injury is recommended.


Assuntos
Traumatismos da Mão , Neurônios-Espelho , Reabilitação Neurológica , Humanos , Traumatismos da Mão/cirurgia , Modalidades de Fisioterapia , Recuperação de Função Fisiológica
13.
NeuroRehabilitation ; 51(4): 649-663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35570502

RESUMO

BACKGROUND: Gait impairments are common disabling symptoms of Parkinson's disease (PD). Among the approaches for gait rehabilitation, interest in robotic devices has grown in recent years. However, the effectiveness compared to other interventions, the optimum amount of training, the type of device, and which patients might benefit most remains unclear. OBJECTIVE: To conduct a systematic review about the effects on gait of robot-assisted gait training (RAGT) in PD patients and to provide advice for clinical practice. METHODS: A search was performed on PubMed, Scopus, PEDro, Cochrane library, Web of science, and guideline databases, following PRISMA guidelines. We included English articles if they used a robotic system with details about the intervention, the parameters, and the outcome measures. We evaluated the level and quality of evidence. RESULTS: We included twenty papers out of 230 results: two systematic reviews, 9 randomized controlled trials, 4 uncontrolled studies, and 5 descriptive reports. Nine studies used an exoskeleton device and the remainders end-effector robots, with large variability in terms of subjects' disease-related disability. CONCLUSIONS: RAGT showed benefits on gait and no adverse events were recorded. However, it does not seem superior to other interventions, except in patients with more severe symptoms and advanced disease.


Assuntos
Doença de Parkinson , Robótica , Humanos , Doença de Parkinson/reabilitação , Marcha , Terapia por Exercício , Avaliação de Resultados em Cuidados de Saúde
14.
Front Hum Neurosci ; 16: 822205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422690

RESUMO

Background and Objective: Absolute angle represents the inclination of a body segment relative to a fixed reference in space. This work compares the absolute and relative angles for exploring biomechanical gait constraints. Methods: Gait patterns of different neuromotor conditions were analyzed using 3D gait analysis: normal gait (healthy, H), Cerebral Palsy (CP), Charcot Marie Tooth (CMT) and Duchenne Muscular Dystrophy (DMD), representing central and peripheral nervous system and muscular disorders, respectively. Forty-two children underwent gait analysis: 10 children affected by CP, 10 children by CMT, 10 children by DMD and 12 healthy children. The kinematic and kinetic parameters were collected to describe the biomechanical pattern of participants' lower limbs. The absolute angles of thigh, leg and foot were calculated using the trigonometric relationship of the tangent. For each absolute series, the mean, range, maximum, minimum and initial contact were calculated. Kinematic and kinetic gait data were studied, and the results were compared with the literature. Results: Statistical analysis of the absolute angles showed how, at the local level, the single segments (thigh, leg and foot) behave differently depending on the pathology. However, if the lower limb is studied globally (sum of the kinematics of the three segments: thigh, leg and foot), a biomechanical constraint emerges. Conclusion: Each segment compensates separately for the disease deficit so as to maintain a global biomechanical invariance. Using a model of inter-joint co-variation could improve the interpretation of the clinical gait pattern.

15.
J Clin Med ; 11(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35207341

RESUMO

BACKGROUND: Children with ataxia experience balance and movement coordination difficulties and needs intensive physical intervention to maintain functional abilities and counteract the disorder. Exergaming represents a valuable strategy to provide engaging physical intervention to children with ataxia, sustaining their motivation to perform the intervention. This paper aims to describe the effect of a home-conducted exergame-based exercise training for upper body movements control of children with ataxia on their ataxic symptoms, walking ability, and hand dexterity. METHODS: Eighteen children with ataxia were randomly divided into intervention and control groups. Participants in the intervention group were asked to follow a 12-week motor activity program at home using the Niurion® exergame. Blind assessments of participants' ataxic symptoms, dominant and non-dominant hand dexterity, and walking ability were conducted. RESULTS: On average, the participants performed the intervention for 61.5% of the expected time. At the end of the training, participants in the intervention group showed improved hand dexterity that worsened in the control group. CONCLUSION: The presented exergame enhanced the participants' hand dexterity. However, there is a need for exergames capable of maintaining a high level of players' motivation in playing. It is advisable to plan a mixed intervention to take care of the multiple aspects of the disorder.

16.
Brain Sci ; 11(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34942935

RESUMO

The upper extremities limitation represents one of the essential functional impairments in patients with cervical spinal cord injury. Electromechanics assisted devices and robots are increasingly used in neurorehabilitation to help functional improvement in patients with neurological diseases. This review aimed to systematically report the evidence-based, state-of-art on clinical applications and robotic-assisted arm training (RAT) in motor and functional recovery in subjects affected by cervical spinal cord injury. The present study has been carried out within the framework of the Italian Consensus Conference on "Rehabilitation assisted by robotic and electromechanical devices for persons with disability of neurological origin" (CICERONE). PubMed/MEDLINE, Cochrane Library, and Physiotherapy Evidence Database (PEDro) databases were systematically searched from inception to September 2021. The 10-item PEDro scale assessed the study quality for the RCT and the AMSTAR-2 for the systematic review. Two different authors rated the studies included in this review. If consensus was not achieved after discussion, a third reviewer was interrogated. The five-item Oxford CEBM scale was used to rate the level of evidence. A total of 11 studies were included. The selected studies were: two systematic reviews, two RCTs, one parallel-group controlled trial, one longitudinal intervention study and five case series. One RCT was scored as a high-quality study, while the systematic review was of low quality. RAT was reported as feasible and safe. Initial positive effects of RAT were found for arm function and quality of movement in addition to conventional therapy. The high clinical heterogeneity of treatment programs and the variety of robot devices could severely affect the generalizability of the study results. Therefore, future studies are warranted to standardize the type of intervention and evaluate the role of robotic-assisted training in subjects affected by cervical spinal cord injury.

17.
Eur J Phys Rehabil Med ; 57(5): 841-849, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34547886

RESUMO

INTRODUCTION: There is growing evidence on the efficacy of gait robotic rehabilitation in patients with multiple sclerosis (MS), but most of the studies have focused on gait parameters. Moreover, clear indications on the clinical use of robotics still lack. As part of the CICERONE Italian Consensus on Robotic Rehabilitation, the aim of this systematic review was to investigate the existing evidence concerning the role of lower limb robotic rehabilitation in improving functional recovery in patients with MS. EVIDENCE ACQUISITION: We searched for and systematically reviewed evidence-based studies on gait robotic rehabilitation in MS, between January 1st, 2010 and December 31st, 2020, in the following databases: Cochrane Library, PEDro, PubMed and Google Scholar. The study quality was assessed by the 16-item assessment of multiple systematic reviews 2 (AMSTAR 2) and the 10-item PEDro scale for the other research studies. EVIDENCE SYNTHESIS: After an accurate screening, only 17 papers were included in the review, and most of them (13 RCT) had a level II evidence. Most of the studies used the Lokomat as a grounded robotic device, two investigated the efficacy of end-effectors and two powered exoskeletons. Generally speaking, robotic treatment has beneficial effects on gait speed, endurance and balance with comparable outcomes to those of conventional treatments. However, in more severe patients (EDSS >6), robotics leads to better functional outcomes. Notably, after gait training with robotics (especially when coupled to virtual reality) MS patients also reach better non-motor outcomes, including spasticity, fatigue, pain, psychological well-being and quality of life. Unfortunately, no clinical indications emerge on the treatment protocols. CONCLUSIONS: The present comprehensive systematic review highlights the potential beneficial role on functional outcomes of the lower limb robotic devices in people with MS. Future studies are warranted to evaluate the role of robotics not only for walking and balance outcomes, but also for other gait-training-related benefits, to identify appropriate outcome measures related to a specific subgroup of MS subjects' disease severity.


Assuntos
Exoesqueleto Energizado , Transtornos Neurológicos da Marcha , Esclerose Múltipla , Marcha , Humanos , Qualidade de Vida
18.
Eur J Phys Rehabil Med ; 57(5): 824-830, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34128606

RESUMO

BACKGROUND: Robot-assisted Arm Therapy (RAT) has been increasingly applied in the last years for promoting functional recovery in patients with disabilities related to neurological health conditions. Evidence of a knowledge-to-action gap for applying robot-assisted technologies in the rehabilitation of patients with neurological health conditions and the difficulty to apply and tailor the knowledge to the local contexts solicited the need for a national consensus conference on these interventions. AIM: The aim of this paper was to explain the methodology used by the working group dedicated to synthesizing evidence on the effectiveness of RAT in neurological health conditions in the context of the CICERONE Italian Consensus Conference. DESIGN: The methodological approach of the working group. SETTING: All rehabilitation settings. POPULATION: Patients with disability following a neurological health condition. METHODS: Following the indications proposed by the Methodological Manual published by the Italian National Institute of Health, a Promoting Committee and a Technical Scientific Committee have been set up. Six working groups (WGs) have been composed to collect evidence on different questions, among which WG2.2 was focused on the effectiveness of RAT in neurological health conditions. RESULTS: WG2.2 started its work defining the specific research questions. It was decided to adopt the ICF as the reference framework for the reporting of all outcomes. Literature search, data extraction and qualitative assessment, evidence analysis and synthesis have been performed. CONCLUSIONS: This paper summarized the methodological approaches used by the WG2.2 of the CICERONE Italian Consensus Conference to define the effectiveness of RAT in the management of patients with neurological health conditions. CLINICAL REHABILITATION IMPACT: WG2.2 synthesis might help clinicians, researchers, and all rehabilitation stakeholders to address the use of RAT in the Individualized Rehabilitation Plan, to guide the allocation of resources and define clinical protocols and indications for the management of patients with different neurological health conditions.


Assuntos
Pessoas com Deficiência , Robótica , Braço , Consenso , Humanos , Itália
19.
Eur J Phys Rehabil Med ; 57(3): 460-471, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33947828

RESUMO

INTRODUCTION: Stroke is the third leading cause of adult disability worldwide, and lower extremity motor impairment is one of the major determinants of long-term disability. Although robotic therapy is becoming more and more utilized in research protocols for lower limb stroke rehabilitation, the gap between research evidence and its use in clinical practice is still significant. The aim of this study was to determine the scope, quality, and consistency of guidelines for robotic lower limb rehabilitation after stroke, in order to provide clinical recommendations. EVIDENCE ACQUISITION: We systematically reviewed stroke rehabilitation guideline recommendations between January 1, 2010 and October 31, 2020. We explored electronic databases (N.=4), guideline repositories and professional rehabilitation networks (N.=12). Two independent reviewers used the Appraisal of Guidelines for Research and Evaluation (AGREE) II instrument, and brief syntheses were used to evaluate and compare the different recommendations, considering only the most recent version. EVIDENCE SYNTHESIS: From the 1219 papers screened, ten eligible guidelines were identified from seven different regions/countries. Four of the included guidelines focused on stroke management, the other six on stroke rehabilitation. Robotic rehabilitation is generally recommended to improve lower limb motor function, including gait and strength. Unfortunately, there is still no consensus about the timing, frequency, training session duration and the exact characteristics of subjects who could benefit from robotics. CONCLUSIONS: Our systematic review shows that the introduction of robotic rehabilitation in standard treatment protocols seems to be the future of stroke rehabilitation. However, robot assisted gait training (RAGT) for stroke needs to be improved with new solutions and in clinical practice guidelines, especially in terms of applicability.


Assuntos
Exoesqueleto Energizado , Transtornos Neurológicos da Marcha/reabilitação , Robótica/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Humanos , Guias de Prática Clínica como Assunto
20.
Eur J Phys Rehabil Med ; 57(5): 831-840, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34042413

RESUMO

INTRODUCTION: The rapid development of electromechanical and robotic devices has profoundly influenced neurorehabilitation. Growth in the scientific and technological aspects thereof is crucial for increasing the number of newly developed devices, and clinicians have welcomed such growth with enthusiasm. Nevertheless, improving the standard for the reporting clinical, technical, and normative aspects of such electromechanical and robotic devices remains an unmet need in neurorehabilitation. Accordingly, this study aimed to analyze the existing literature on electromechanical and robotic devices used in neurorehabilitation, considering the current clinical, technical, and regulatory classification systems. EVIDENCE ACQUISITION: Within the CICERONE Consensus Conference framework, studies on electromechanical and robotic devices used for upper- and lower-limb rehabilitation in persons with neurological disabilities in adulthood and childhood were reviewed. We have conducted a literature search using the following databases: MEDLINE, Cochrane Library, PeDro, Institute of Electrical and Electronics Engineers, Science Direct, and Google Scholar. Clinical, technical, and regulatory classification systems were applied to collect information on the electromechanical and robotic devices. The study designs and populations were investigated. EVIDENCE SYNTHESIS: Overall, 316 studies were included in the analysis. More than half (52%) of the studies were randomised controlled trials (RCTs). The population investigated the most suffered from strokes, followed by spinal cord injuries, multiple sclerosis, cerebral palsy, and traumatic brain injuries. In total, 100 devices were described; of these, 19% were certified with the CE mark. Overall, the main type of device was an exoskeleton. However, end-effector devices were primarily used for the upper limbs, whereas exoskeletons were used for the lower limbs (for both children and adults). CONCLUSIONS: The current literature on robotic neurorehabilitation lacks detailed information regarding the technical characteristics of the devices used. This affects the understanding of the possible mechanisms underlying recovery. Unfortunately, many electromechanical and robotic devices are not provided with CE marks, strongly hindering the research on the clinical outcomes of rehabilitation treatments based on these devices. A more significant effort is needed to improve the description of the robotic devices used in neurorehabilitation in terms of the technical and functional details, along with high-quality RCT studies.


Assuntos
Exoesqueleto Energizado , Reabilitação Neurológica , Procedimentos Cirúrgicos Robóticos , Robótica , Adulto , Criança , Humanos , Extremidade Superior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...