Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 226(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37724024

RESUMO

Moderate heat stress negatively impacts fertility in sexually reproducing organisms at sublethal temperatures. These moderate heat stress effects are typically more pronounced in males. In some species, sperm production, quality and motility are the primary cause of male infertility during moderate heat stress. However, this is not the case in the model nematode Caenorhabditis elegans, where changes in mating behavior are the primary cause of fertility loss. We report that heat-stressed C. elegans males are more motivated to locate and remain on food and less motivated to leave food to find and mate with hermaphrodites than their unstressed counterparts. Heat-stressed males also demonstrate a reduction in motility that likely limits their ability to mate. Collectively these changes result in a dramatic reduction in reproductive success. The reduction in mate-searching behavior may be partially due to increased expression of the chemoreceptor odr-10 in the AWA sensory neurons, which is a marker for starvation in males. These results demonstrate that moderate heat stress may have profound and previously underappreciated effects on reproductive behaviors. As climate change continues to raise global temperatures, it will be imperative to understand how moderate heat stress affects behavioral and motility elements critical to reproduction.


Assuntos
Proteínas de Caenorhabditis elegans , Infertilidade , Animais , Masculino , Caenorhabditis elegans/fisiologia , Comportamento Sexual Animal/fisiologia , Sêmen , Reprodução/fisiologia , Resposta ao Choque Térmico , Proteínas de Caenorhabditis elegans/metabolismo
2.
PLoS One ; 18(6): e0286926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37294778

RESUMO

Maintenance of germline function under stress conditions is crucial for species survival. The germ line in many species is especially sensitive to elevated temperature. We have investigated the role of the pocket protein LIN-35 in preserving fertility in Caenorhabditis elegans under moderate temperature stress. We show that lin-35 mutants display several temperature sensitive germline defects, and more severe reductions in brood size at elevated temperatures compared to wild type. This loss of fertility under temperature stress is primarily due to loss of zygotic, but not maternal, LIN-35. Additionally, we have found that expression of LIN-35 is necessary in both the germ line and soma for the preserving fertility under moderate temperature stress. Specifically, while LIN-35 function in the germ line is required for maintaining fertility in hermaphrodites, broad somatic expression of LIN-35 is also necessary for oocyte formation and/or function under moderate temperature stress. Together, our data add to the emerging understanding of the critical role that LIN-35 plays in preserving tissues against stress.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fertilidade/genética , Células Germinativas/metabolismo , Temperatura
3.
MicroPubl Biol ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34693216

RESUMO

Exposure to moderate temperature stress can have profoundly negative effects on an organism's reproductive capacity at temperatures where there are minimal or indiscernible effects on the organism as a whole. These negative effects are often more pronounced in males of the species that produce sperm. Previously we showed that few males of Caenorhabditis elegans wild type strains are able to successfully produce any cross progeny after experiencing temperature stress. However, these experiments did not assess the number of progeny from temperature stressed males. To understand if temperature stress can reduce the number of progeny a male sires, we crossed temperature stressed males of three wild type strains of C. elegans: JU1171, LKC34, and N2, to strain matched hermaphrodites of their own genetic background or to uncoordinated hermaphrodites in the N2 background. We found that significantly fewer males exposed to moderate temperature stress can successfully mate and that the small number of males in the population that do successfully mate produce significantly fewer viable cross progeny than unstressed controls. Our results suggest that exposure to moderate temperature stress significantly reduces male C. elegans chances at reproducing similar to what is seen in other organisms.

4.
G3 (Bethesda) ; 10(2): 863-874, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31843805

RESUMO

Establishment and maintenance of proper gene expression is a requirement for normal growth and development. The DREAM complex in Caenorhabditis elegans functions as a transcriptional repressor of germline genes in somatic cells. At 26°, DREAM complex mutants show increased misexpression of germline genes in somatic cells and High Temperature Arrest (HTA) of worms at the first larval stage. To identify transcription factors required for the ectopic expression of germline genes in DREAM complex mutants, we conducted an RNA interference screen against 123 transcription factors capable of binding DREAM target promoter loci for suppression of the HTA phenotype in lin-54 mutants. We found that knock-down of 15 embryonically expressed transcription factors suppress the HTA phenotype in lin-54 mutants. Five of the transcription factors found in the initial screen have associations with Wnt signaling pathways. In a subsequent RNAi suppression screen of Wnt signaling factors we found that knock-down of the non-canonical Wnt/PCP pathway factors vang-1, prkl-1 and fmi-1 in a lin-54 mutant background resulted in strong suppression of the HTA phenotype. Animals mutant for both lin-54 and vang-1 showed almost complete suppression of the HTA phenotype, pgl-1 misexpression, and fertility defects associated with lin-54 single mutants at 26°. We propose a model whereby a set of embryonically expressed transcription factors, and the Wnt/PCP pathway, act opportunistically to activate DREAM complex target genes in somatic cells of DREAM complex mutants at 26°.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Expressão Ectópica do Gene , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/metabolismo , Via de Sinalização Wnt , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Células Germinativas/metabolismo , Larva , Modelos Moleculares , Complexos Multiproteicos/genética , Fenótipo , Interferência de RNA , Proteínas Repressoras/genética
5.
J Exp Biol ; 222(Pt 24)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31672732

RESUMO

Reproduction is a fundamental imperative of all forms of life. For all the advantages sexual reproduction confers, it has a deeply conserved flaw: it is temperature sensitive. As temperatures rise, fertility decreases. Across species, male fertility is particularly sensitive to elevated temperature. Previously, we have shown in the model nematode Caenorhabditiselegans that all males are fertile at 20°C, but almost all males have lost fertility at 27°C. Male fertility is dependent on the production of functional sperm, successful mating and transfer of sperm, and successful fertilization post-mating. To determine how male fertility is impacted by elevated temperature, we analyzed these aspects of male reproduction at 27°C in three wild-type strains of C. elegans: JU1171, LKC34 and N2. We found no effect of elevated temperature on the number of immature non-motile spermatids formed. There was only a weak effect of elevated temperature on sperm activation. In stark contrast, there was a strong effect of elevated temperature on male mating behavior, male tail morphology and sperm transfer such that males very rarely completed mating successfully when exposed to 27°C. Therefore, we propose a model where elevated temperature reduces male fertility as a result of the negative impacts of temperature on the somatic tissues necessary for mating. Loss of successful mating at elevated temperature overrides any effects that temperature may have on the germline or sperm cells.


Assuntos
Caenorhabditis elegans/fisiologia , Fertilidade , Temperatura Alta , Comportamento Sexual Animal , Animais , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/genética , Masculino , Cauda/anatomia & histologia
6.
Development ; 146(19)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31515206

RESUMO

Tissue-specific establishment of repressive chromatin through creation of compact chromatin domains during development is necessary to ensure proper gene expression and cell fate. Caenorhabditis elegans synMuv B proteins are important for the soma/germline fate decision and mutants demonstrate ectopic germline gene expression in somatic tissue, especially at high temperature. We show that C. elegans synMuv B proteins regulate developmental chromatin compaction and that the timing of chromatin compaction is temperature sensitive in both wild type and synMuv B mutants. Chromatin compaction in mutants is delayed into developmental time periods when zygotic gene expression is upregulated and demonstrates an anterior-to-posterior pattern. Loss of this patterned compaction coincides with the developmental time period of ectopic germline gene expression, which leads to a developmental arrest in synMuv B mutants. Finally, accelerated cell division rates at elevated temperature may contribute to a lack of coordination between expression of tissue specific transcription programs and chromatin compaction at high temperature. Thus, chromatin organization during development is regulated both spatially and temporally by synMuv B proteins to establish repressive chromatin in a tissue-specific manner to ensure proper gene expression.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Linhagem da Célula/genética , Núcleo Celular/metabolismo , Cromossomos/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Intestinos/citologia , Larva/metabolismo , Mutação/genética , Temperatura , Fatores de Tempo
7.
Genetics ; 212(1): 125-140, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30910798

RESUMO

Repression of germline-promoting genes in somatic cells is critical for somatic development and function. To study how germline genes are repressed in somatic tissues, we analyzed key histone modifications in three Caenorhabditis elegans synMuv B mutants, lin-15B, lin-35, and lin-37-all of which display ectopic expression of germline genes in the soma. LIN-35 and LIN-37 are members of the conserved DREAM complex. LIN-15B has been proposed to work with the DREAM complex but has not been shown biochemically to be a member of the complex. We found that, in wild-type worms, synMuv B target genes and germline genes are enriched for the repressive histone modification dimethylation of histone H3 on lysine 9 (H3K9me2) at their promoters. Genes with H3K9me2 promoter localization are evenly distributed across the autosomes, not biased toward autosomal arms, as are the broad H3K9me2 domains. Both synMuv B targets and germline genes display a dramatic reduction of H3K9me2 promoter localization in lin-15B mutants, but much weaker reduction in lin-35 and lin-37 mutants. This difference between lin-15B and DREAM complex mutants likely represents a difference in molecular function for these synMuv B proteins. In support of the pivotal role of H3K9me2 in regulation of germline genes by LIN-15B, global loss of H3K9me2 but not H3K9me3 results in phenotypes similar to synMuv B mutants, high-temperature larval arrest, and ectopic expression of germline genes in the soma. We propose that LIN-15B-driven enrichment of H3K9me2 at promoters of germline genes contributes to repression of those genes in somatic tissues.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Animais , Caenorhabditis elegans/metabolismo , Células Germinativas , Metilação
8.
PLoS One ; 11(12): e0167613, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27911941

RESUMO

Engineered nanoparticles are becoming increasingly incorporated into technology and consumer products. In 2014, over 300 tons of copper oxide nanoparticles were manufactured in the United States. The increased production of nanoparticles raises concerns regarding the potential introduction into the environment or human exposure. Copper oxide nanoparticles commonly release copper ions into solutions, which contribute to their toxicity. We quantified the inhibitory effects of both copper oxide nanoparticles and copper sulfate on C. elegans toxicological endpoints to elucidate their biological effects. Several toxicological endpoints were analyzed in C. elegans, including nematode reproduction, feeding behavior, and average body length. We examined three wild C. elegans isolates together with the Bristol N2 laboratory strain to explore the influence of different genotypic backgrounds on the physiological response to copper challenge. All strains exhibited greater sensitivity to copper oxide nanoparticles compared to copper sulfate, as indicated by reduction of average body length and feeding behavior. Reproduction was significantly reduced only at the highest copper dose, though still more pronounced with copper oxide nanoparticles compared to copper sulfate treatment. Furthermore, we investigated the effects of copper oxide nanoparticles and copper sulfate on neurons, cells with known vulnerability to heavy metal toxicity. Degeneration of dopaminergic neurons was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, mutants in the divalent-metal transporters, smf-1 or smf-2, showed increased tolerance to copper exposure, implicating both transporters in copper-induced neurodegeneration. These results highlight the complex nature of CuO nanoparticle toxicity, in which a nanoparticle-specific effect was observed in some traits (average body length, feeding behavior) and a copper ion specific effect was observed for other traits (neurodegeneration, response to stress).


Assuntos
Caenorhabditis elegans/metabolismo , Cobre/toxicidade , Neurônios Dopaminérgicos/metabolismo , Nanopartículas/toxicidade , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Animais , Tamanho Corporal/efeitos dos fármacos , Tamanho Corporal/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Humanos , Mutação , Doenças Neurodegenerativas/genética
9.
PLoS One ; 9(11): e112377, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25380048

RESUMO

The temperature sensitivity of the germ line is conserved from nematodes to mammals. Previous studies in C. briggsae and Drosophila showed that isolates originating from temperate latitudes lose fertility at a lower temperature than strains originating from tropical latitudes. In order to investigate these relationships in C. elegans, analysis of the fertility of 22 different wild-type isolates of C. elegans isolated from equatorial, tropical and temperate regions was undertaken. It was found that there are significant temperature, genotype and temperature × genotype effects on fertility but region of isolation showed no significant effect on differences in fertility. For most isolates 100% of the population maintained fertility from 20°C to 26°C, but there was a precipitous drop in the percentage of fertile hermaphrodites at 27°C. In contrast, all isolates show a progressive decrease in brood size as temperature increases from 20°C to 26°C, followed by a brood size near zero at 27°C. Temperature shift experiments were performed to better understand the causes of high temperature loss of fertility. Males up-shifted to high temperature maintained fertility, while males raised at high temperature lost fertility. Down-shifting males raised at high temperature generally did not restore fertility. This result differs from that observed in Drosophila and suggested that in C. elegans spermatogenesis or sperm function is irreversibly impaired in males that develop at high temperature. Mating and down-shifting experiments with hermaphrodites were performed to investigate the relative contributions of spermatogenic and oogenic defects to high temperature loss of fertility. It was found that the hermaphrodites of all isolates demonstrated loss in both spermatogenic and oogenic germ lines that differed in their relative contribution by isolate. These studies uncovered unexpectedly high variation in both the loss of fertility and problems with oocyte function in natural variants of C. elegans at high temperature.


Assuntos
Caenorhabditis elegans/fisiologia , Oogênese/fisiologia , Espermatozoides/fisiologia , Temperatura , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Animais , Caenorhabditis elegans/classificação , Caenorhabditis elegans/genética , Clima , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Genótipo , Geografia , Organismos Hermafroditas/genética , Organismos Hermafroditas/fisiologia , Masculino , Oogênese/genética , Reprodução/genética , Reprodução/fisiologia , Espermatozoides/metabolismo
10.
Development ; 138(6): 1069-79, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21343362

RESUMO

Previous studies demonstrated that a subset of synMuv B mutants ectopically misexpress germline-specific P-granule proteins in their somatic cells, suggesting a failure to properly orchestrate a soma/germline fate decision. Surprisingly, this fate confusion does not affect viability at low to ambient temperatures. Here, we show that, when grown at high temperature, a majority of synMuv B mutants irreversibly arrest at the L1 stage. High temperature arrest (HTA) is accompanied by upregulation of many genes characteristic of germ line, including genes encoding components of the synaptonemal complex and other meiosis proteins. HTA is suppressed by loss of global regulators of germline chromatin, including MES-4, MRG-1, ISW-1 and the MES-2/3/6 complex, revealing that arrest is caused by somatic cells possessing a germline-like chromatin state. Germline genes are preferentially misregulated in the intestine, and necessity and sufficiency tests demonstrate that the intestine is the tissue responsible for HTA. We propose that synMuv B mutants fail to erase or antagonize an inherited germline chromatin state in somatic cells during embryonic and early larval development. As a consequence, somatic cells gain a germline program of gene expression in addition to their somatic program, leading to a mixed fate. Somatic expression of germline genes is enhanced at elevated temperature, leading to developmentally compromised somatic cells and arrest of newly hatched larvae.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Linhagem da Célula/genética , Células Germinativas/fisiologia , Intestinos/embriologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes de Helmintos , Células Germinativas/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Intestinos/crescimento & desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/fisiologia , Estágios do Ciclo de Vida/genética , Análise em Microsséries , Sobrevida/fisiologia , Temperatura
11.
Genome Res ; 21(2): 325-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21177967

RESUMO

The C. elegans genome has been completely sequenced, and the developmental anatomy of this model organism is described at single-cell resolution. Here we utilize strategies that exploit this precisely defined architecture to link gene expression to cell type. We obtained RNAs from specific cells and from each developmental stage using tissue-specific promoters to mark cells for isolation by FACS or for mRNA extraction by the mRNA-tagging method. We then generated gene expression profiles of more than 30 different cells and developmental stages using tiling arrays. Machine-learning-based analysis detected transcripts corresponding to established gene models and revealed novel transcriptionally active regions (TARs) in noncoding domains that comprise at least 10% of the total C. elegans genome. Our results show that about 75% of transcripts with detectable expression are differentially expressed among developmental stages and across cell types. Examination of known tissue- and cell-specific transcripts validates these data sets and suggests that newly identified TARs may exercise cell-specific functions. Additionally, we used self-organizing maps to define groups of coregulated transcripts and applied regulatory element analysis to identify known transcription factor- and miRNA-binding sites, as well as novel motifs that likely function to control subsets of these genes. By using cell-specific, whole-genome profiling strategies, we have detected a large number of novel transcripts and produced high-resolution gene expression maps that provide a basis for establishing the roles of individual genes in cellular differentiation.


Assuntos
Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Meiose/genética , Dados de Sequência Molecular , Oogênese/genética , Fases de Leitura Aberta/genética , Transcrição Gênica , Regiões não Traduzidas/genética , Inativação do Cromossomo X/genética
12.
Dev Biol ; 314(2): 329-40, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18199432

RESUMO

Genetic analysis of muscle specification, formation and function in model systems has provided valuable insight into human muscle physiology and disease. Studies in Drosophila have been particularly useful for discovering key genes involved in muscle specification, myoblast fusion, and sarcomere organization. The muscles of the Drosophila female reproductive system have received little attention despite extensive work on oogenesis. We have used newly available GFP protein trap lines to characterize of ovarian muscle morphology and sarcomere organization. The muscle cells surrounding the oviducts are multinuclear with highly organized sarcomeres typical of somatic muscles. In contrast, the two muscle layers of the ovary, which are derived from gonadal mesoderm, have a mesh-like morphology similar to gut visceral muscle. Protein traps in the Fasciclin 3 gene produced Fas3::GFP that localized in dots around the periphery of epithelial sheath cells, the muscle surrounding ovarioles. Surprisingly, the epithelial sheath cells each contain a single nucleus, indicating these cells do not undergo myoblast fusion during development. Consistent with this observation, we were able to use the Flp/FRT system to efficiently generate genetic mosaics in the epithelial sheath, suggesting these cells provide a new opportunity for clonal analysis of adult striated muscle.


Assuntos
Drosophila/fisiologia , Proteínas de Fluorescência Verde/genética , Músculo Liso/citologia , Ovário/citologia , Animais , Células Cultivadas , Drosophila/citologia , Drosophila/genética , Feminino , Genes Reporter , Processamento de Imagem Assistida por Computador , Larva/citologia , Larva/fisiologia , Vísceras/citologia
13.
Development ; 134(4): 703-12, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17215303

RESUMO

An essential component of normal development is controlling the transition from cell proliferation to differentiation. One such transition occurs during Drosophila oogenesis. In early oogenesis, germ cells undergo mitotic proliferation and contain a specialized organelle called a fusome, whereas later post-mitotic cells differentiate and lose the fusome as F-actin-rich ring canals form. The hts gene encodes the only Drosophila Adducin, and is a female-sterile mutant that affects both the fusome and ring canals. We show that one Hts protein, Ovhts, is a polyprotein that is cleaved to produce two products, Ovhts-Fus and Ovhts-RC. Whereas Ovhts-Fus localizes to the fusome in mitotic cells, Ovhts-RC localizes to ring canals throughout later oogenesis. We demonstrate that an uncleavable version of Ovhts delays the transition from fusome-containing cells to those that have ring canals. Ovhts is the first polyprotein shown to produce proteins that function in separate structures.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Oócitos/ultraestrutura , Oogênese , Ovário/química , Actinas , Animais , Proteínas de Ligação a Calmodulina/análise , Proteínas de Ligação a Calmodulina/fisiologia , Drosophila/fisiologia , Proteínas de Drosophila/análise , Proteínas de Drosophila/fisiologia , Feminino , Complexos Multiproteicos , Oócitos/química , Poliproteínas/metabolismo , Poliproteínas/fisiologia
14.
Genetics ; 175(3): 1089-104, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17179094

RESUMO

The use of fluorescent protein tags has had a huge impact on cell biological studies in virtually every experimental system. Incorporation of coding sequence for fluorescent proteins such as green fluorescent protein (GFP) into genes at their endogenous chromosomal position is especially useful for generating GFP-fusion proteins that provide accurate cellular and subcellular expression data. We tested modifications of a transposon-based protein trap screening procedure in Drosophila to optimize the rate of recovering useful protein traps and their analysis. Transposons carrying the GFP-coding sequence flanked by splice acceptor and donor sequences were mobilized, and new insertions that resulted in production of GFP were captured using an automated embryo sorter. Individual stocks were established, GFP expression was analyzed during oogenesis, and insertion sites were determined by sequencing genomic DNA flanking the insertions. The resulting collection includes lines with protein traps in which GFP was spliced into mRNAs and embedded within endogenous proteins or enhancer traps in which GFP expression depended on splicing into transposon-derived RNA. We report a total of 335 genes associated with protein or enhancer traps and a web-accessible database for viewing molecular information and expression data for these genes.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/isolamento & purificação , Drosophila melanogaster/genética , Proteínas de Fluorescência Verde/genética , Mutagênese Insercional/métodos , Proteínas Recombinantes de Fusão/genética , Animais , Western Blotting , Cruzamentos Genéticos , Primers do DNA , Bases de Dados Genéticas , Proteínas de Drosophila/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Reação em Cadeia da Polimerase/métodos , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...