Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 13(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36832038

RESUMO

This study reports the synthesis of a nanocomposite consisting of spongin and its applicability in the development of an aptasensing platform with high performance. The spongin was carefully extracted from a marine sponge and decorated with copper tungsten oxide hydroxide. The resulting spongin-copper tungsten oxide hydroxide was functionalized by silver nanoparticles and utilized in electrochemical aptasensor fabrication. The nanocomposite covered on a glassy carbon electrode surface amplified the electron transfer and increased active electrochemical sites. The aptasensor was fabricated by loading of thiolated aptamer on the embedded surface via thiol-AgNPs linkage. The applicability of the aptasensor was tested in detecting the Staphylococcus aureus bacterium as one of the five most common causes of nosocomial infectious diseases. The aptasensor measured S. aureus under a linear concentration range of 10-108 colony-forming units per milliliter and a limit of quantification and detection of 12 and 1 colony-forming unit per milliliter, respectively. The highly selective diagnosis of S. aureus in the presence of some common bacterial strains was satisfactorily evaluated. The acceptable results of the human serum analysis as the real sample may be promising in the bacteria tracking in clinical samples underlying the green chemistry principle.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanocompostos , Humanos , Staphylococcus aureus , Cobre , Prata , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção
2.
Mar Drugs ; 20(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36354988

RESUMO

Three-dimensional chitinous scaffolds often used in regenerative medicine, tissue engineering, biomimetics and technology are mostly isolated from marine organisms, such as marine sponges (Porifera). In this work, we report the results of the electrochemical isolation of the ready to use chitinous matrices from three species of verongiid demosponges (Aplysina archeri, Ianthella basta and Suberea clavata) as a perfect example of possible morphological and chemical dimorphism in the case of the marine chitin sources. The electrolysis of concentrated Na2SO4 aqueous solution showed its superiority over the chemical chitin isolation method in terms of the treatment time reduction: only 5.5 h for A. archeri, 16.5 h for I. basta and 20 h for the S. clavata sample. Further investigation of the isolated scaffolds by digital microscopy and SEM showed that the electrolysis-supported isolation process obtains chitinous scaffolds with well-preserved spatial structure and it can be competitive to other alternative chitin isolation techniques that use external accelerating factors such as microwave irradiation or atmospheric plasma. Moreover, the infrared spectroscopy (ATR-FTIR) proved that with the applied electrochemical conditions, the transformation into chitosan does not take place.


Assuntos
Quitina , Poríferos , Animais , Quitina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Poríferos/química , Eletrólise
3.
Adv Sci (Weinh) ; 9(11): e2105059, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156333

RESUMO

Actin is a fundamental member of an ancient superfamily of structural intracellular proteins and plays a crucial role in cytoskeleton dynamics, ciliogenesis, phagocytosis, and force generation in both prokaryotes and eukaryotes. It is shown that actin has another function in metazoans: patterning biosilica deposition, a role that has spanned over 500 million years. Species of glass sponges (Hexactinellida) and demosponges (Demospongiae), representatives of the first metazoans, with a broad diversity of skeletal structures with hierarchical architecture unchanged since the late Precambrian, are studied. By etching their skeletons, organic templates dominated by individual F-actin filaments, including branched fibers and the longest, thickest actin fiber bundles ever reported, are isolated. It is proposed that these actin-rich filaments are not the primary site of biosilicification, but this highly sophisticated and multi-scale form of biomineralization in metazoans is ptterned.


Assuntos
Actinas , Dióxido de Silício , Vidro , Dióxido de Silício/química , Esqueleto
4.
ACS Appl Bio Mater ; 5(2): 873-880, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35050590

RESUMO

The design of sensitive and cost-effective biocomposite materials with high catalytic activity for the effective electrooxidation of glucose plays a key role in developing enzyme-free glucose sensors. The porous three-dimensional (3D) spongin scaffold of marine sponge origin provides an excellent template for the growth of atacamite crystals and improves the activity of atacamite as a catalyst. By using the design of experiment method, the influence of different parameters on the electrode efficiency was optimized. The optimized sensor based on spongin-atacamite showed distinguished performance toward glucose with two linear ranges of 0.4-200 µM and 0.2-10 mM and high sensitivities of 3908.4 and 600.5 µA mM-1 cm-2, respectively. Importantly, the designed sensor exhibited strong selectivity and favorable stability, reproducibility, and repeatability. The performance in the real application was estimated by glucose detection in spiked human blood serum samples, which verified its great potential as a reliable platform for enzyme-free glucose sensing.


Assuntos
Cobre , Técnicas Eletroquímicas , Cloretos , Cobre/química , Técnicas Eletroquímicas/métodos , Glucose , Reprodutibilidade dos Testes
5.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830470

RESUMO

Marine sponges were among the first multicellular organisms on our planet and have survived to this day thanks to their unique mechanisms of chemical defense and the specific design of their skeletons, which have been optimized over millions of years of evolution to effectively inhabit the aquatic environment. In this work, we carried out studies to elucidate the nature and nanostructural organization of three-dimensional skeletal microfibers of the giant marine demosponge Ianthella basta, the body of which is a micro-reticular, durable structure that determines the ideal filtration function of this organism. For the first time, using the battery of analytical tools including three-dimensional micro-X-ray Fluorescence (3D-µXRF), X-ray diffraction (XRD), infra-red (FTIR), Raman and Near Edge X-ray Fine Structure (NEXAFS) spectroscopy, we have shown that biomineral calcite is responsible for nano-tuning the skeletal fibers of this sponge species. This is the first report on the presence of a calcitic mineral phase in representatives of verongiid sponges which belong to the class Demospongiae. Our experimental data suggest a possible role for structural amino polysaccharide chitin as a template for calcification. Our study suggests further experiments to elucidate both the origin of calcium carbonate inside the skeleton of this sponge and the mechanisms of biomineralization in the surface layers of chitin microfibers saturated with bromotyrosines, which have effective antimicrobial properties and are responsible for the chemical defense of this organism. The discovery of the calcified phase in the chitinous template of I. basta skeleton is expected to broaden the knowledge in biomineralization science where the calcium carbonate is regarded as a valuable material for applications in biomedicine, environmental science, and even in civil engineering.


Assuntos
Organismos Aquáticos/química , Carbonato de Cálcio/química , Poríferos/química , Esqueleto/química , Animais , Biomineralização , Quitina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Alicerces Teciduais/química , Difração de Raios X
6.
Mar Drugs ; 19(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34677462

RESUMO

Collagen filaments derived from the two marine demosponges Ircinia oros and Sarcotragus foetidus were for the first time isolated, biochemically characterised and tested for their potential use in regenerative medicine. SDS-PAGE of isolated filaments revealed a main collagen subunit band of 130 kDa in both of the samples under study. DSC analysis on 2D membranes produced with collagenous sponge filaments showed higher thermal stability than commercial mammalian-derived collagen membranes. Dynamic mechanical and thermal analysis attested that the membranes obtained from filaments of S. foetidus were more resistant and stable at the rising temperature, compared to the ones derived from filaments of I. oros. Moreover, the former has higher stability in saline and in collagenase solutions and evident antioxidant activity. Conversely, their water binding capacity results were lower than that of membranes obtained from I. oros. Adhesion and proliferation tests using L929 fibroblasts and HaCaT keratinocytes resulted in a remarkable biocompatibility of both developed membrane models, and gene expression analysis showed an evident up-regulation of ECM-related genes. Finally, membranes from I. oros significantly increased type I collagen gene expression and its release in the culture medium. The findings here reported strongly suggest the biotechnological potential of these collagenous structures of poriferan origin as scaffolds for wound healing.


Assuntos
Materiais Biocompatíveis/farmacologia , Colágeno/farmacologia , Fibroblastos/efeitos dos fármacos , Poríferos , Animais , Organismos Aquáticos , Materiais Biocompatíveis/química , Colágeno/química , Células HaCaT/efeitos dos fármacos , Humanos , Medicina Regenerativa , Alicerces Teciduais
7.
Mar Drugs ; 19(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34564174

RESUMO

The renewable, proteinaceous, marine biopolymer spongin is yet the focus of modern research. The preparation of a magnetic three-dimensional (3D) spongin scaffold with nano-sized Fe3O4 cores is reported here for the first time. The formation of this magnetic spongin-Fe3O4 composite was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA) (TGA-DTA), vibrating sample magnetometer (VSM), Fourier-transform infrared spectroscopy (FTIR), and zeta potential analyses. Field emission scanning electron microscopy (FE-SEM) confirmed the formation of well-dispersed spherical nanoparticles tightly bound to the spongin scaffold. The magnetic spongin-Fe3O4 composite showed significant removal efficiency for two cationic dyes (i.e., crystal violet (CV) and methylene blue (MB)). Adsorption experiments revealed that the prepared material is a fast, high-capacity (77 mg/g), yet selective adsorbent for MB. This behavior was attributed to the creation of strong electrostatic interactions between the spongin-Fe3O4 and MB or CV, which was reflected by adsorption mechanism evaluations. The adsorption of MB and CV was found to be a function of pH, with maximum removal performance being observed over a wide pH range (pH = 5.5-11). In this work, we combined Fe3O4 nanoparticles and spongin scaffold properties into one unique composite, named magnetic spongin scaffold, in our attempt to create a sustainable absorbent for organic wastewater treatment. The appropriative mechanism of adsorption of the cationic dyes on a magnetic 3D spongin scaffold is proposed. Removal of organic dyes and other contaminants is essential to ensure healthy water and prevent various diseases. On the other hand, in many cases, dyes are used as models to demonstrate the adsorption properties of nanostructures. Due to the good absorption properties of magnetic spongin, it can be proposed as a green and uncomplicated adsorbent for the removal of different organic contaminants and, furthermore, as a carrier in drug delivery applications.


Assuntos
Biopolímeros/química , Corantes/química , Poríferos , Adsorção , Animais , Organismos Aquáticos , Compostos Férricos/química , Poluentes Químicos da Água/química , Purificação da Água
8.
Adv Mater ; 33(30): e2101682, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34085323

RESUMO

The design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molecular and nano-level. It presents a challenge to obtain a holistic understanding of the mechanisms underlying the interaction of organic and inorganic phases under conditions of harsh chemical reactions for biopolymers. Yet, an understanding of these mechanisms can lead to the development of unusual-but functional-hybrid materials. In this work, a key way of designing centimeter-scale macroporous 3D composites, using renewable marine biopolymer spongin and a model industrial solution that simulates the highly toxic copper-containing waste generated in the production of printed circuit boards worldwide, is proposed. A new spongin-atacamite composite material is developed and its structure is confirmed using neutron diffraction, X-ray diffraction, high-resolution transmission electron microscopy/selected-area electron diffraction, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and electron paramagnetic resonance spectroscopy. The formation mechanism for this material is also proposed. This study provides experimental evidence suggesting multifunctional applicability of the designed composite in the development of 3D constructed sensors, catalysts, and antibacterial filter systems.


Assuntos
Materiais Biomiméticos/química , Biopolímeros/química , Cloretos/química , Cobre/química , Nanocompostos/química , Poluição Química da Água/prevenção & controle , Amônia/química , Catálise , Humanos , Conformação Molecular , Oxirredução , Porosidade , Impressão Tridimensional , Relação Estrutura-Atividade
9.
Artigo em Inglês | MEDLINE | ID: mdl-33424135

RESUMO

The marine sponges of the order Verongiida (Demospongiae: Porifera) have survived on our planet for more than 500 million years due to the presence of a unique strategy of chemical protection by biosynthesis of more than 300 derivatives of biologically active bromotyrosines as secondary metabolites. These compounds are synthesized within spherulocytes, highly specialized cells located within chitinous skeletal fibers of these sponges from where they can be extruded in the sea water and form protective space against pathogenic viruses, bacteria and other predators. This chitin is an example of unique biomaterial as source of substances with antibiotic properties. Traditionally, the attention of researchers was exclusively drawn to lipophilic bromotyrosines, the extraction methods of which were based on the use of organic solvents only. Alternatively, we have used in this work a biomimetic water-based approach, because in natural conditions, sponges actively extrude bromotyrosines that are miscible with the watery environment. This allowed us to isolate 3,5-dibromoquinolacetic acid from an aqueous extract of the dried demosponge Aplysina aerophoba and compare its antimicrobial activity with the same compound obtained by the chemical synthesis. Both synthetic and natural compounds have shown antimicrobial properties against clinical strains of Staphylococcus aureus, Enterococcus faecalis and Propionibacterium acnes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00339-020-04167-0.

10.
Carbohydr Polym ; 252: 117204, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183639

RESUMO

Chitin is the second most abundant biopolymer and functions as the main structural component in a variety of living organisms. In nature, chitin rarely occurs in a pure form, but rather as nanoorganized chitin-proteins, chitin-pigments, or chitin-mineral composite biomaterials. Although chitin has a long history of scientific studies, it is still extensively investigated for practical applications in medicine, biotechnology, and biomimetics. The complexity of chitin has required the development of highly sensitive analytical methods for its identification. These methods are crucial for furthering disease diagnostics as well as advancing modern chitin-related technologies. Here we provide a summary of chitin identification by spectroscopic (NEXAFS, FTIR, Raman, NMR, colorimetry), chromatographic (TLC, GC, HPLC), electrophoretic (HPCE), and diffraction methods (XRD, WAXS, SAXS, HRTEM-SAED). Biochemical and immunochemical (ELISA, immunostaining) methods are described with respect to their medical application. This review outlines the history as well as the current progress in the analytical methods for chitin identification.


Assuntos
Quitina , Cromatografia/métodos , Eletroforese/métodos , Imunoensaio/métodos , Análise Espectral/métodos , Animais , Quitina/química , Quitina/ultraestrutura
11.
Mar Drugs ; 18(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255647

RESUMO

The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and of raw materials for practical applications in technology and biomedicine. The use of marine natural products as multifunctional biomaterials is currently undergoing a renaissance in the modern materials science. The diversity of marine biomaterials, their forms and fields of application are highlighted in this review. We will discuss the challenges, solutions, and future directions of modern marine biomaterialogy using a thorough analysis of scientific sources over the past ten years.


Assuntos
Organismos Aquáticos/metabolismo , Materiais Biocompatíveis/farmacologia , Biotecnologia , Minerais/farmacologia , Polissacarídeos/farmacologia , Proteínas/farmacologia , Animais , Materiais Biocompatíveis/isolamento & purificação , Biotecnologia/tendências , Difusão de Inovações , Humanos , Minerais/isolamento & purificação , Polissacarídeos/isolamento & purificação , Proteínas/isolamento & purificação , Fatores de Tempo
12.
Mar Drugs ; 18(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498448

RESUMO

The development of novel and effective methods for the isolation of chitin, which remains one of the fundamental aminopolysaccharides within skeletal structures of diverse marine invertebrates, is still relevant. In contrast to numerous studies on chitin extraction from crustaceans, mollusks and sponges, there are only a few reports concerning its isolation from corals, and especially black corals (Antipatharia). In this work, we report the stepwise isolation and identification of chitin from Cirrhipathes sp. (Antipatharia, Antipathidae) for the first time. The proposed method, aiming at the extraction of the chitinous scaffold from the skeleton of black coral species, combined a well-known chemical treatment with in situ electrolysis, using a concentrated Na2SO4 aqueous solution as the electrolyte. This novel method allows the isolation of α-chitin in the form of a microporous membrane-like material. Moreover, the extracted chitinous scaffold, with a well-preserved, unique pore distribution, has been extracted in an astoundingly short time (12 h) compared to the earlier reported attempts at chitin isolation from Antipatharia corals.


Assuntos
Antozoários/anatomia & histologia , Antozoários/química , Quitina/isolamento & purificação , Animais , Quitina/química , Eletroquímica
13.
Mar Drugs ; 18(6)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32531909

RESUMO

Chitin, as one of nature's most abundant structural polysaccharides, possesses worldwide, high industrial potential and a functionality that is topically pertinent. Nowadays, the metallization of naturally predesigned, 3D chitinous scaffolds originating from marine sponges is drawing focused attention. These invertebrates represent a unique, renewable source of specialized chitin due to their ability to grow under marine farming conditions. In this study, the development of composite material in the form of 3D chitin-based skeletal scaffolds covered with silver nanoparticles (AgNPs) and Ag-bromide is described for the first time. Additionally, the antibacterial properties of the obtained materials and their possible applications as a water filtration system are also investigated.


Assuntos
Antibacterianos/farmacologia , Quitina/química , Escherichia coli/efeitos dos fármacos , Poríferos , Animais , Organismos Aquáticos , Nanopartículas Metálicas/química , Prata/química , Relação Estrutura-Atividade
14.
Mater Sci Eng C Mater Biol Appl ; 109: 110566, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228987

RESUMO

Marine demosponges of the Verongiida order are considered a gold-mine for bioinspired materials science and marine pharmacology. The aim of this work was to simultaneously isolate selected bromotyrosines and unique chitinous structures from A. aerophoba and to propose these molecules and biomaterials for possible application as antibacterial and antitumor compounds and as ready-to-use scaffolds for cultivation of cardiomyocytes, respectively. Among the extracted bromotyrosines, the attention has been focused on aeroplysinin-1 that showed interesting unexpected growth inhibition properties for some Gram-negative clinical multi-resistant bacterial strains, such as A. baumannii and K. pneumoniae, and on aeroplysinin-1 and on isofistularin-3 for their anti-tumorigenic activity. For both compounds, the effects are cell line dependent, with significant growth inhibition activity on the neuroblastoma cell line SH-SY5Y by aeroplysinin-1 and on breast cancer cell line MCF-7 by isofistularin-3. In this study, we also compared the cultivation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) on the A. aerophoba chitinous scaffolds, in comparison to chitin structures that were pre-coated with Geltrex™, an extracellular matrix mimetic which is used to enhance iPSC-CM adhesion. The iPSC-CMs on uncoated and pure chitin structures started contracting 24 h after seeding, with comparable behaviour observed on Geltrex-coated cell culture plates, confirming the biocompatibility of the sponge biomaterial with this cell type. The advantage of A. aerophoba is that this source organism does not need to be collected in large quantities to supply the necessary amount for further pre-clinical studies before chemical synthesis of the active compounds will be available. A preliminary analysis of marine sponge bioeconomy as a perspective direction for application of biomaterials and secondary bioactive metabolites has been finally performed for the first time.


Assuntos
Acetonitrilas , Alcaloides , Organismos Aquáticos/química , Materiais Biomiméticos , Cicloexenos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Poríferos/química , Acetonitrilas/química , Acetonitrilas/farmacocinética , Acetonitrilas/farmacologia , Alcaloides/química , Alcaloides/farmacocinética , Alcaloides/farmacologia , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/farmacologia , Linhagem Celular Tumoral , Cicloexenos/química , Cicloexenos/farmacocinética , Cicloexenos/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células MCF-7 , Miócitos Cardíacos/citologia
15.
J Environ Manage ; 261: 110218, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148288

RESUMO

Diverse fields of modern environmental technology are nowadays focused on the discovery and development of new sources for oil spill removal. An especially interesting type of sorbents is those of natural origin-biosorbents-as ready-to-use constructs with biodegradable, nontoxic, renewable and cost-efficient properties. Moreover, the growing problem of microplastic-related contamination in the oceans further encourages the use of biosorbents. Here, for the first time, naturally pre-designed molting cuticles of the Theraphosidae spider Avicularia sp. "Peru purple", as part of constituting a large-scale spider origin waste material, were used for efficient sorption of crude oil. Compared with currently used materials, the proposed biosorbent of spider cuticular origin demonstrates excellent ability to remain on the water surface for a long time. In this study the morphology and hydrophobic features of Theraphosidae cuticle are investigated for the first time. The unique surface morphology and very low surface free energy (4.47 ± 0.08 mN/m) give the cuticle-based, tube-like, porous biosorbent excellent oleophilic-hydrophobic properties. The crude oil sorption capacities of A. sp. "Peru purple" molt structures in sea water, distilled water and fresh water were measured at 12.6 g/g, 15.8 g/g and 16.6 g/g respectively. These results indicate that this biomaterial is more efficient than such currently used fibrous sorbents as human hairs or chicken feathers. Four cycles of desorption were performed and confirmed the reusability of the proposed biosorbent. We suggest that the oil adsorption mechanism is related to the brush-like and microporous structure of the tubular spider molting cuticles and may also involve interaction between the cuticular wax layers and crude oil.


Assuntos
Poluição por Petróleo , Petróleo , Aranhas , Poluentes Químicos da Água , Adsorção , Animais , Muda , Peru , Plásticos
16.
Mar Drugs ; 18(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092907

RESUMO

Structure-based tissue engineering requires large-scale 3D cell/tissue manufacture technologies, to produce biologically active scaffolds. Special attention is currently paid to naturally pre-designed scaffolds found in skeletons of marine sponges, which represent a renewable resource of biomaterials. Here, an innovative approach to the production of mineralized scaffolds of natural origin is proposed. For the first time, a method to obtain calcium carbonate deposition ex vivo, using living mollusks hemolymph and a marine-sponge-derived template, is specifically described. For this purpose, the marine sponge Aplysin aarcheri and the terrestrial snail Cornu aspersum were selected as appropriate 3D chitinous scaffold and as hemolymph donor, respectively. The formation of calcium-based phase on the surface of chitinous matrix after its immersion into hemolymph was confirmed by Alizarin Red staining. A direct role of mollusks hemocytes is proposed in the creation of fine-tuned microenvironment necessary for calcification ex vivo. The X-ray diffraction pattern of the sample showed a high CaCO3 amorphous content. Raman spectroscopy evidenced also a crystalline component, with spectra corresponding to biogenic calcite. This study resulted in the development of a new biomimetic product based on ex vivo synthetized ACC and calcite tightly bound to the surface of 3D sponge chitin structure.


Assuntos
Quitina/análogos & derivados , Quitina/química , Hemolinfa/metabolismo , Poríferos/metabolismo , Caramujos/metabolismo , Alicerces Teciduais , Animais , Biomineralização , Carbonato de Cálcio/química , Difração de Raios X
17.
Carbohydr Polym ; 226: 115301, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31582063

RESUMO

Diverse fields of modern technology and biomedicine can benefit from the application of ready-to-use chitin-based scaffolds. In this work we show for the first time the applicability of tubular and porous chitin from Caribena versicolor spiders as a scaffold for the development of an effective CuO/Cu(OH)2 catalyst for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AM), and as a scaffold for the tissue engineering of selected cells. The formation of CuO/Cu(OH)2 phases on and within the chitinous tubes leads to a hybrid material with excellent catalytic performance with respect to the reduction of p-nitrophenol. On the other hand, experimental results provide for the first time strong evidence for the biocompatibility of spider chitin with different cell types, a human progenitor cell line (hPheo1), as well as cardiomyocytes differentiated from induced pluripotent stem cells (iPSC-CMs) that were cultured on a tube-like scaffold.


Assuntos
Aracnídeos/metabolismo , Materiais Biomiméticos/química , Quitina/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Células Cultivadas , Humanos
18.
Mar Drugs ; 17(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658704

RESUMO

Naturally occurring three-dimensional (3D) biopolymer-based matrices that can be used in different biomedical applications are sustainable alternatives to various artificial 3D materials. For this purpose, chitin-based structures from marine sponges are very promising substitutes. Marine sponges from the order Verongiida (class Demospongiae) are typical examples of demosponges with well-developed chitinous skeletons. In particular, species belonging to the family Ianthellidae possess chitinous, flat, fan-like fibrous skeletons with a unique, microporous 3D architecture that makes them particularly interesting for applications. In this work, we focus our attention on the demosponge Ianthella flabelliformis (Linnaeus, 1759) for simultaneous extraction of both naturally occurring ("ready-to-use") chitin scaffolds, and biologically active bromotyrosines which are recognized as potential antibiotic, antitumor, and marine antifouling substances. We show that selected bromotyrosines are located within pigmental cells which, however, are localized within chitinous skeletal fibers of I. flabelliformis. A two-step reaction provides two products: treatment with methanol extracts the bromotyrosine compounds bastadin 25 and araplysillin-I N20 sulfamate, and a subsequent treatment with acetic acid and sodium hydroxide exposes the 3D chitinous scaffold. This scaffold is a mesh-like structure, which retains its capillary network, and its use as a potential drug delivery biomaterial was examined for the first time. The results demonstrate that sponge-derived chitin scaffolds, impregnated with decamethoxine, effectively inhibit growth of the human pathogen Staphylococcus aureus in an agar diffusion assay.


Assuntos
Organismos Aquáticos/química , Quitina/química , Portadores de Fármacos/química , Poríferos/química , Tirosina/análogos & derivados , Animais , Antibacterianos/administração & dosagem , Quitina/isolamento & purificação , Citoesqueleto/química , Compostos de Decametônio/administração & dosagem , Portadores de Fármacos/isolamento & purificação , Hidrocarbonetos Bromados/química , Hidrocarbonetos Bromados/isolamento & purificação , Isoxazóis/química , Isoxazóis/isolamento & purificação , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Poríferos/citologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Tirosina/química , Tirosina/isolamento & purificação
19.
Sci Adv ; 5(10): eaax2805, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31620556

RESUMO

Fabrication of biomimetic materials and scaffolds is usually a micro- or even nanoscale process; however, most testing and all manufacturing require larger-scale synthesis of nanoscale features. Here, we propose the utilization of naturally prefabricated three-dimensional (3D) spongin scaffolds that preserve molecular detail across centimeter-scale samples. The fine-scale structure of this collagenous resource is stable at temperatures of up to 1200°C and can produce up to 4 × 10-cm-large 3D microfibrous and nanoporous turbostratic graphite. Our findings highlight the fact that this turbostratic graphite is exceptional at preserving the nanostructural features typical for triple-helix collagen. The resulting carbon sponge resembles the shape and unique microarchitecture of the original spongin scaffold. Copper electroplating of the obtained composite leads to a hybrid material with excellent catalytic performance with respect to the reduction of p-nitrophenol in both freshwater and marine environments.


Assuntos
Biomimética , Colágeno/química , Carbono/química , Catálise , Colágeno/ultraestrutura , Cobre/química , Análise Espectral , Alicerces Teciduais/química
20.
Int J Mol Sci ; 20(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618840

RESUMO

Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex®. Thus, the natural, unmodified I. labyrinthus cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics.


Assuntos
Organismos Aquáticos/química , Materiais Biocompatíveis/química , Produtos Biológicos/química , Poríferos/química , Animais , Curativos Biológicos , Quitina/química , Humanos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...