Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34531323

RESUMO

Receptor kinases (RKs) are fundamental for extracellular sensing and regulate development and stress responses across kingdoms. In plants, leucine-rich repeat receptor kinases (LRR-RKs) are primarily peptide receptors that regulate responses to myriad internal and external stimuli. Phosphorylation of LRR-RK cytoplasmic domains is among the earliest responses following ligand perception, and reciprocal transphosphorylation between a receptor and its coreceptor is thought to activate the receptor complex. Originally proposed based on characterization of the brassinosteroid receptor, the prevalence of complex activation via reciprocal transphosphorylation across the plant RK family has not been tested. Using the LRR-RK ELONGATION FACTOR TU RECEPTOR (EFR) as a model, we set out to understand the steps critical for activating RK complexes. While the EFR cytoplasmic domain is an active protein kinase in vitro and is phosphorylated in a ligand-dependent manner in vivo, catalytically deficient EFR variants are functional in antibacterial immunity. These results reveal a noncatalytic role for EFR in triggering immune signaling and indicate that reciprocal transphoshorylation is not a ubiquitous requirement for LRR-RK complex activation. Rather, our analysis of EFR along with a detailed survey of the literature suggests a distinction between LRR-RKs with RD- versus non-RD protein kinase domains. Based on newly identified phosphorylation sites that regulate the activation state of the EFR complex in vivo, we propose that LRR-RK complexes containing a non-RD protein kinase may be regulated by phosphorylation-dependent conformational changes of the ligand-binding receptor, which could initiate signaling either allosterically or through driving the dissociation of negative regulators of the complex.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/fisiologia , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Arabidopsis/genética , Membrana Celular/metabolismo , Expressão Gênica , Imunidade Inata/genética , Ligantes , Fator Tu de Elongação de Peptídeos/metabolismo , Fosforilação , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Transdução de Sinais/fisiologia
2.
ACS Chem Biol ; 16(3): 548-556, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33621466

RESUMO

We report a general approach to engineering multivalent d-proteins with antibody-like activities in vivo. Mirror-image phage display and structure-guided design were utilized to create a d-protein that uses receptor mimicry to antagonize vascular endothelial growth factor A (VEGF-A). Selections against the d-protein form of VEGF-A using phage-displayed libraries of two different domain scaffolds yielded two proteins that bound distinct receptor interaction sites on VEGF-A. X-ray crystal structures of the d-protein/VEGF-A complexes were used to guide affinity maturation and to construct a heterodimeric d-protein VEGF-A antagonist with picomolar activity. The d-protein VEGF-A antagonist prevented vascular leakage in a rabbit eye model of wet age-related macular degeneration and slowed tumor growth in the MC38 syngeneic mouse tumor model with efficacies comparable to those of approved antibody drugs, and in contrast with antibodies, the d-protein was non-immunogenic during treatment and following subcutaneous immunizations.


Assuntos
Antineoplásicos/química , Neoplasias/tratamento farmacológico , Peptídeos/química , Receptores de Fatores de Crescimento do Endotélio Vascular/química , Vasos Retinianos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Antineoplásicos/farmacologia , Bevacizumab/farmacologia , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Olho/efeitos dos fármacos , Feminino , Humanos , Camundongos , Modelos Moleculares , Biblioteca de Peptídeos , Peptídeos/farmacologia , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Coelhos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
J Vis Exp ; (159)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32510494

RESUMO

One mechanism of action for clinical efficacy by therapeutic antibodies is the promotion of immune-related functions, such as cytokine secretion and cytotoxicity, driven by FcγRIIIa (CD16) expressed on natural killer (NK) cells. These observations have led to research focusing on methods to increase Fc receptor-mediated events, which include removal of a fucose moiety found on the Fc portion of the antibody. Further studies have elucidated the mechanistic changes in signaling, cellular processes, and cytotoxic characteristics that increase ADCC activity with afucosylated antibodies. Additionally, other studies have shown the potential benefits of these antibodies in combination with small molecule inhibitors. These experiments demonstrated the molecular and cellular mechanisms underlying the benefits of using afucosylated antibodies in combination settings. Many of these observations were based on an artificial in vitro activation assay in which the FcγRIIIa on human NK cells was activated by therapeutic antibodies. This assay provided the flexibility to study downstream effector NK cell functions, such as cytokine production and degranulation. In addition, this assay has been used to interrogate signaling pathways and identify molecules that can be modulated or used as biomarkers. Finally, other therapeutic molecules (i.e., small molecule inhibitors) have been added to the system to provide insights into the combination of these therapeutics with therapeutic antibodies, which is essential in the current clinical space. This manuscript aims to provide a technical foundation for performing this artificial human NK cell activation assay. The protocol demonstrates key steps for cell activation as well as potential downstream applications that range from functional readouts to more mechanistic observations.


Assuntos
Anticorpos/uso terapêutico , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptores de IgG/metabolismo , Anticorpos/imunologia , Genótipo , Humanos , Células Matadoras Naturais/citologia , Ativação Linfocitária , Transdução de Sinais
4.
Cell Rep ; 13(8): 1589-97, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26586432

RESUMO

Gut microbes can profoundly modulate mucosal barrier-promoting Th17 cells in mammals. A salient feature of HIV/simian immunodeficiency virus (SIV) immunopathogenesis is the loss of Th17 cells, which has been linked to increased activity of the immunomodulatory enzyme, indoleamine 2,3-dioxygenase 1 (IDO 1). The role of gut microbes in this system remains unknown, and the SIV-infected rhesus macaque provides a well-described model for HIV-associated Th17 loss and mucosal immune disruption. We observed a specific depletion of gut-resident Lactobacillus during acute and chronic SIV infection of rhesus macaques, which was also seen in early HIV-infected humans. This depletion in rhesus macaques correlated with increased IDO1 activity and Th17 loss. Macaques supplemented with a Lactobacillus-containing probiotic exhibited decreased IDO1 activity during chronic SIV infection. We propose that Lactobacillus species inhibit mammalian IDO1 and thus may help to preserve Th17 cells during pathogenic SIV infection, providing support for Lactobacillus species as modulators of mucosal immune homeostasis.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Lactobacillus/imunologia , Macaca mulatta/imunologia , Vírus da Imunodeficiência Símia/imunologia , Células Th17/imunologia , Animais , Feminino , Infecções por HIV/imunologia , Infecções por HIV/microbiologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/microbiologia , Células Th17/microbiologia
5.
Proc Natl Acad Sci U S A ; 109(28): E1972-9, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22699502

RESUMO

Cassava bacterial blight (CBB), incited by Xanthomonas axonopodis pv. manihotis (Xam), is the most important bacterial disease of cassava, a staple food source for millions of people in developing countries. Here we present a widely applicable strategy for elucidating the virulence components of a pathogen population. We report Illumina-based draft genomes for 65 Xam strains and deduce the phylogenetic relatedness of Xam across the areas where cassava is grown. Using an extensive database of effector proteins from animal and plant pathogens, we identify the effector repertoire for each sequenced strain and use a comparative sequence analysis to deduce the least polymorphic of the conserved effectors. These highly conserved effectors have been maintained over 11 countries, three continents, and 70 y of evolution and as such represent ideal targets for developing resistance strategies.


Assuntos
Manihot/metabolismo , Manihot/microbiologia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA/métodos , Xanthomonas axonopodis/metabolismo , Área Sob a Curva , Progressão da Doença , Genoma Bacteriano , Genômica , Geografia , Imunidade Inata , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/genética , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...