Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 103(11): 1555-62, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19740540

RESUMO

Gulf War Syndrome is a multi-system disorder afflicting many veterans of Western armies in the 1990-1991 Gulf War. A number of those afflicted may show neurological deficits including various cognitive dysfunctions and motor neuron disease, the latter expression virtually indistinguishable from classical amyotrophic lateral sclerosis (ALS) except for the age of onset. This ALS "cluster" represents the second such ALS cluster described in the literature to date. Possible causes of GWS include several of the adjuvants in the anthrax vaccine and others. The most likely culprit appears to be aluminum hydroxide. In an initial series of experiments, we examined the potential toxicity of aluminum hydroxide in male, outbred CD-1 mice injected subcutaneously in two equivalent-to-human doses. After sacrifice, spinal cord and motor cortex samples were examined by immunohistochemistry. Aluminum-treated mice showed significantly increased apoptosis of motor neurons and increases in reactive astrocytes and microglial proliferation within the spinal cord and cortex. Morin stain detected the presence of aluminum in the cytoplasm of motor neurons with some neurons also testing positive for the presence of hyper-phosphorylated tau protein, a pathological hallmark of various neurological diseases, including Alzheimer's disease and frontotemporal dementia. A second series of experiments was conducted on mice injected with six doses of aluminum hydroxide. Behavioural analyses in these mice revealed significant impairments in a number of motor functions as well as diminished spatial memory capacity. The demonstrated neurotoxicity of aluminum hydroxide and its relative ubiquity as an adjuvant suggest that greater scrutiny by the scientific community is warranted.


Assuntos
Adjuvantes Imunológicos/toxicidade , Hidróxido de Alumínio/toxicidade , Doença dos Neurônios Motores/induzido quimicamente , Neurônios Motores/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , Adjuvantes Imunológicos/administração & dosagem , Hidróxido de Alumínio/administração & dosagem , Animais , Vacinas contra Antraz/administração & dosagem , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Colina O-Acetiltransferase/efeitos dos fármacos , Colina O-Acetiltransferase/metabolismo , Proteína Glial Fibrilar Ácida , Humanos , Injeções Subcutâneas , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/psicologia , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/metabolismo , Proteínas tau/metabolismo
2.
Neuromolecular Med ; 9(1): 83-100, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17114826

RESUMO

Gulf War illness (GWI) affects a significant percentage of veterans of the 1991 conflict, but its origin remains unknown. Associated with some cases of GWI are increased incidences of amyotrophic lateral sclerosis and other neurological disorders. Whereas many environmental factors have been linked to GWI, the role of the anthrax vaccine has come under increasing scrutiny. Among the vaccine's potentially toxic components are the adjuvants aluminum hydroxide and squalene. To examine whether these compounds might contribute to neuronal deficits associated with GWI, an animal model for examining the potential neurological impact of aluminum hydroxide, squalene, or aluminum hydroxide combined with squalene was developed. Young, male colony CD-1 mice were injected with the adjuvants at doses equivalent to those given to US military service personnel. All mice were subjected to a battery of motor and cognitive-behavioral tests over a 6-mo period postinjections. Following sacrifice, central nervous system tissues were examined using immunohistochemistry for evidence of inflammation and cell death. Behavioral testing showed motor deficits in the aluminum treatment group that expressed as a progressive decrease in strength measured by the wire-mesh hang test (final deficit at 24 wk; about 50%). Significant cognitive deficits in water-maze learning were observed in the combined aluminum and squalene group (4.3 errors per trial) compared with the controls (0.2 errors per trial) after 20 wk. Apoptotic neurons were identified in aluminum-injected animals that showed significantly increased activated caspase-3 labeling in lumbar spinal cord (255%) and primary motor cortex (192%) compared with the controls. Aluminum-treated groups also showed significant motor neuron loss (35%) and increased numbers of astrocytes (350%) in the lumbar spinal cord. The findings suggest a possible role for the aluminum adjuvant in some neurological features associated with GWI and possibly an additional role for the combination of adjuvants.


Assuntos
Adjuvantes Farmacêuticos/efeitos adversos , Hidróxido de Alumínio/efeitos adversos , Síndrome do Golfo Pérsico/patologia , Esqualeno/efeitos adversos , Animais , Vacinas contra Antraz , Comportamento Animal/efeitos dos fármacos , Caspase 3/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Córtex Motor/efeitos dos fármacos , Córtex Motor/enzimologia , Córtex Motor/patologia , Síndrome do Golfo Pérsico/induzido quimicamente , Síndrome do Golfo Pérsico/psicologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/enzimologia , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA