Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Radiol Med ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755477

RESUMO

OBJECTIVE: To evaluate the performance of radiomic analysis on contrast-enhanced mammography images to identify different histotypes of breast cancer mainly in order to predict grading, to identify hormone receptors, to discriminate human epidermal growth factor receptor 2 (HER2) and to identify luminal histotype of the breast cancer. METHODS: From four Italian centers were recruited 180 malignant lesions and 68 benign lesions. However, only the malignant lesions were considered for the analysis. All patients underwent contrast-enhanced mammography in cranium caudal (CC) and medium lateral oblique (MLO) view. Considering histological findings as the ground truth, four outcomes were considered: (1) G1 + G2 vs. G3; (2) HER2 + vs. HER2 - ; (3) HR + vs. HR - ; and (4) non-luminal vs. luminal A or HR + /HER2- and luminal B or HR + /HER2 + . For multivariate analysis feature selection, balancing techniques and patter recognition approaches were considered. RESULTS: The univariate findings showed that the diagnostic performance is low for each outcome, while the results of the multivariate analysis showed that better performances can be obtained. In the HER2 + detection, the best performance (73% of accuracy and AUC = 0.77) was obtained using a linear regression model (LRM) with 12 features extracted by MLO view. In the HR + detection, the best performance (77% of accuracy and AUC = 0.80) was obtained using a LRM with 14 features extracted by MLO view. In grading classification, the best performance was obtained by a decision tree trained with three predictors extracted by MLO view reaching an accuracy of 82% on validation set. In the luminal versus non-luminal histotype classification, the best performance was obtained by a bagged tree trained with 15 predictors extracted by CC view reaching an accuracy of 94% on validation set. CONCLUSIONS: The results suggest that radiomics analysis can be effectively applied to design a tool to support physician decision making in breast cancer classification. In particular, the classification of luminal versus non-luminal histotypes can be performed with high accuracy.

2.
Radiol Med ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761342

RESUMO

PURPOSE: To assess the efficacy of machine learning and radiomics analysis by computed tomography (CT) in presurgical setting, to predict RAS mutational status in colorectal liver metastases. METHODS: Patient selection in a retrospective study was carried out from January 2018 to May 2021 considering the following inclusion criteria: patients subjected to surgical resection for liver metastases; proven pathological liver metastases; patients subjected to enhanced CT examination in the presurgical setting with a good quality of images; and RAS assessment as standard reference. A total of 851 radiomics features were extracted using the PyRadiomics Python package from the Slicer 3D image computing platform after slice-by-slice segmentation on CT portal phase by two expert radiologists of each individual liver metastasis performed first independently by the individual reader and then in consensus. Balancing technique was performed, and inter- and intraclass correlation coefficients were calculated to assess the between-observer and within-observer reproducibility of features. Receiver operating characteristics (ROC) analysis with the calculation of area under the ROC curve (AUC), sensitivity (SENS), specificity (SPEC), positive predictive value (PPV), negative predictive value (NPV) and accuracy (ACC) were assessed for each parameter. Linear and non-logistic regression model (LRM and NLRM) and different machine learning-based classifiers were considered. Moreover, features selection was performed before and after a normalized procedure using two different methods (3-sigma and z-score). RESULTS: Seventy-seven liver metastases in 28 patients with a mean age of 60 years (range 40-80 years) were analyzed. The best predictors, at univariate analysis for both normalized procedures, were original_shape_Maximum2DDiameter and wavelet_HLL_glcm_InverseVariance that reached an accuracy of 80%, an AUC ≥ 0.75, a sensitivity ≥ 80% and a specificity ≥ 70% (p value < < 0.01). However, a multivariate analysis significantly increased the accuracy in RAS prediction when a linear regression model (LRM) was used. The best performance was obtained using a LRM combining linearly 12 robust features after a z-score normalization procedure: AUC of 0.953, accuracy 98%, sensitivity 96%, specificity of 100%, PPV 100% and NPV 96% (p value < < 0.01). No statistically significant increase was obtained considering the tested machine learning both without normalization and with normalization methods. CONCLUSIONS: Normalized approach in CT radiomics analysis allows to predict RAS mutational status in colorectal liver metastases patients.

3.
Int J Emerg Med ; 17(1): 45, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561694

RESUMO

BACKGROUND: Shortages of mechanical ventilation have become a constant problem in Emergency Departments (EDs), thereby affecting the timely deployment of medical interventions that counteract the severe health complications experienced during respiratory disease seasons. It is then necessary to count on agile and robust methodological approaches predicting the expected demand loads to EDs while supporting the timely allocation of ventilators. In this paper, we propose an integration of Artificial Intelligence (AI) and Discrete-event Simulation (DES) to design effective interventions ensuring the high availability of ventilators for patients needing these devices. METHODS: First, we applied Random Forest (RF) to estimate the mechanical ventilation probability of respiratory-affected patients entering the emergency wards. Second, we introduced the RF predictions into a DES model to diagnose the response of EDs in terms of mechanical ventilator availability. Lately, we pretested two different interventions suggested by decision-makers to address the scarcity of this resource. A case study in a European hospital group was used to validate the proposed methodology. RESULTS: The number of patients in the training cohort was 734, while the test group comprised 315. The sensitivity of the AI model was 93.08% (95% confidence interval, [88.46 - 96.26%]), whilst the specificity was 85.45% [77.45 - 91.45%]. On the other hand, the positive and negative predictive values were 91.62% (86.75 - 95.13%) and 87.85% (80.12 - 93.36%). Also, the Receiver Operator Characteristic (ROC) curve plot was 95.00% (89.25 - 100%). Finally, the median waiting time for mechanical ventilation was decreased by 17.48% after implementing a new resource capacity strategy. CONCLUSIONS: Combining AI and DES helps healthcare decision-makers to elucidate interventions shortening the waiting times for mechanical ventilators in EDs during respiratory disease epidemics and pandemics.

5.
Radiol Med ; 129(3): 420-428, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308061

RESUMO

PURPOSE: To assess the efficacy of radiomics features, obtained by magnetic resonance imaging (MRI) with hepatospecific contrast agent, in pre-surgical setting, to predict RAS mutational status in liver metastases. METHODS: Patients with MRI in pre-surgical setting were enrolled in a retrospective study. Manual segmentation was made by means 3D Slicer image computing, and 851 radiomics features were extracted as median values using the PyRadiomics Python package. The features were extracted considering the agreement with the Imaging Biomarker Standardization Initiative (IBSI). Balancing was performed through synthesis of samples for the underrepresented classes using the self-adaptive synthetic oversampling (SASYNO) approach. Inter- and intraclass correlation coefficients (ICC) were calculated to assess the between-observer and within-observer reproducibility of all radiomics characteristics. For continuous variables, nonparametric Wilcoxon-Mann-Whitney test was utilized. Benjamini and Hochberg's false discovery rate (FDR) adjustment for multiple testing was used. Receiver operating characteristics (ROC) analysis with the calculation of area under the ROC curve (AUC), sensitivity (SENS), specificity (SPEC), positive predictive value (PPV), negative predictive value (NPV) and accuracy (ACC) were assessed for each parameter. Linear and non-logistic regression model (LRM and NLRM) and different machine learning-based classifiers including decision tree (DT), k-nearest neighbor (KNN) and support vector machine (SVM) were considered. Moreover, features selection were performed before and after a normalized procedure using two different methods (3-sigma and z-score). McNemar test was used to assess differences statistically significant between dichotomic tables. All statistical procedures were done using MATLAB R2021b Statistics and Machine Toolbox (MathWorks, Natick, MA, USA). RESULTS: Seven normalized radiomics features, extracted from arterial phase, 11 normalized radiomics features, from portal phase, 12 normalized radiomics features from hepatobiliary phase and 12 normalized features from T2-W SPACE sequence were robust predictors of RAS mutational status. The multivariate analysis increased significantly the accuracy in RAS prediction when a LRM was used, combining 12 robust normalized features extracted by VIBE hepatobiliary phase reaching an accuracy of 99%, a sensitivity 97%, a specificity of 100%, a PPV of 100% and a NPV of 98%. No statistically significant increase was obtained, considering the tested classifiers DT, KNN and SVM, both without normalization and with normalization methods. CONCLUSIONS: Normalized approach in MRI radiomics analysis allows to predict RAS mutational status.


Assuntos
Imageamento por Ressonância Magnética , Radiômica , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Aprendizado de Máquina
6.
Diagnostics (Basel) ; 14(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38248029

RESUMO

PURPOSE: We aimed to assess the efficacy of machine learning and radiomics analysis using magnetic resonance imaging (MRI) with a hepatospecific contrast agent, in a pre-surgical setting, to predict tumor budding in liver metastases. METHODS: Patients with MRI in a pre-surgical setting were retrospectively enrolled. Manual segmentation was made by means 3D Slicer image computing, and 851 radiomics features were extracted as median values using the PyRadiomics Python package. Balancing was performed and inter- and intraclass correlation coefficients were calculated to assess the between observer and within observer reproducibility of all radiomics extracted features. A Wilcoxon-Mann-Whitney nonparametric test and receiver operating characteristics (ROC) analysis were carried out. Balancing and feature selection procedures were performed. Linear and non-logistic regression models (LRM and NLRM) and different machine learning-based classifiers including decision tree (DT), k-nearest neighbor (KNN) and support vector machine (SVM) were considered. RESULTS: The internal training set included 49 patients and 119 liver metastases. The validation cohort consisted of a total of 28 single lesion patients. The best single predictor to classify tumor budding was original_glcm_Idn obtained in the T1-W VIBE sequence arterial phase with an accuracy of 84%; wavelet_LLH_firstorder_10Percentile was obtained in the T1-W VIBE sequence portal phase with an accuracy of 92%; wavelet_HHL_glcm_MaximumProbability was obtained in the T1-W VIBE sequence hepatobiliary excretion phase with an accuracy of 88%; and wavelet_LLH_glcm_Imc1 was obtained in T2-W SPACE sequences with an accuracy of 88%. Considering the linear regression analysis, a statistically significant increase in accuracy to 96% was obtained using a linear weighted combination of 13 radiomic features extracted from the T1-W VIBE sequence arterial phase. Moreover, the best classifier was a KNN trained with the 13 radiomic features extracted from the arterial phase of the T1-W VIBE sequence, obtaining an accuracy of 95% and an AUC of 0.96. The validation set reached an accuracy of 94%, a sensitivity of 86% and a specificity of 95%. CONCLUSIONS: Machine learning and radiomics analysis are promising tools in predicting tumor budding. Considering the linear regression analysis, there was a statistically significant increase in accuracy to 96% using a weighted linear combination of 13 radiomics features extracted from the arterial phase compared to a single radiomics feature.

7.
Curr Oncol ; 31(1): 403-424, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38248112

RESUMO

The aim of this informative review was to investigate the application of radiomics in cancer imaging and to summarize the results of recent studies to support oncological imaging with particular attention to breast cancer, rectal cancer and primitive and secondary liver cancer. This review also aims to provide the main findings, challenges and limitations of the current methodologies. Clinical studies published in the last four years (2019-2022) were included in this review. Among the 19 studies analyzed, none assessed the differences between scanners and vendor-dependent characteristics, collected images of individuals at additional points in time, performed calibration statistics, represented a prospective study performed and registered in a study database, conducted a cost-effectiveness analysis, reported on the cost-effectiveness of the clinical application, or performed multivariable analysis with also non-radiomics features. Seven studies reached a high radiomic quality score (RQS), and seventeen earned additional points by using validation steps considering two datasets from two distinct institutes and open science and data domains (radiomics features calculated on a set of representative ROIs are open source). The potential of radiomics is increasingly establishing itself, even if there are still several aspects to be evaluated before the passage of radiomics into routine clinical practice. There are several challenges, including the need for standardization across all stages of the workflow and the potential for cross-site validation using real-world heterogeneous datasets. Moreover, multiple centers and prospective radiomics studies with more samples that add inter-scanner differences and vendor-dependent characteristics will be needed in the future, as well as the collecting of images of individuals at additional time points, the reporting of calibration statistics and the performing of prospective studies registered in a study database.


Assuntos
Neoplasias da Mama , Neoplasias Hepáticas , Humanos , Feminino , Radiômica , Estudos Prospectivos , Bases de Dados Factuais
8.
J Clin Med ; 13(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256682

RESUMO

Background: Small renal masses (SRMs) are defined as contrast-enhanced renal lesions less than or equal to 4 cm in maximal diameter, which can be compatible with stage T1a renal cell carcinomas (RCCs). Currently, 50-61% of all renal tumors are found incidentally. Methods: The characteristics of the lesion influence the choice of the type of management, which include several methods SRM of management, including nephrectomy, partial nephrectomy, ablation, observation, and also stereotactic body radiotherapy. Typical imaging methods available for differentiating benign from malignant renal lesions include ultrasound (US), contrast-enhanced ultrasound (CEUS), computed tomography (CT), and magnetic resonance imaging (MRI). Results: Although ultrasound is the first imaging technique used to detect small renal lesions, it has several limitations. CT is the main and most widely used imaging technique for SRM characterization. The main advantages of MRI compared to CT are the better contrast resolution and tissue characterization, the use of functional imaging sequences, the possibility of performing the examination in patients allergic to iodine-containing contrast medium, and the absence of exposure to ionizing radiation. For a correct evaluation during imaging follow-up, it is necessary to use a reliable method for the assessment of renal lesions, represented by the Bosniak classification system. This classification was initially developed based on contrast-enhanced CT imaging findings, and the 2019 revision proposed the inclusion of MRI features; however, the latest classification has not yet received widespread validation. Conclusions: The use of radiomics in the evaluation of renal masses is an emerging and increasingly central field with several applications such as characterizing renal masses, distinguishing RCC subtypes, monitoring response to targeted therapeutic agents, and prognosis in a metastatic context.

9.
Sci Total Environ ; 912: 169218, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092215

RESUMO

Fossil and renewable fuels are used by industrial units that produce energy-intensive products. Competitive fuel pricing encourages these fuel sources' usage globally, particularly in developing nations, which leads to large volumes of byproducts like fly ash among thermal power plant operators. The elements and compounds found in coal fly ash (CFA) and biomass fly ash (BFA) can be utilized through several engineering applications. This study aims to assess typical CFA and BFA samples quantitatively and qualitatively via techniques such as ultimate analysis (CH-S), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray fluorescence (XRF) elemental analysis, and ash fusion temperature (AFT), to anticipate the ideal ratios of coal to biomass blends for combustion applications while adhering to environmental regulations. The optimal blend, consisting of 75 % CFA and 25 % BFA, exhibited improved carbon (C%) and hydrogen (H%) percentages, increasing from 2.5 % to 4.67 % and from 0 % to 0.12 %, respectively. These improvements were further confirmed by the observed functional groups in FTIR, indicating a rising trend in both carbon and hydroxyl groups from BFA to CFA. XRF and XRD also confirmed it and TGA also showed optimum mass loss (ML%) behavior of 14.55 % for 75CFA + 25BFA. According to slagging and fouling indices, the values of RB/A, Rs, and Fu indicate a reduction in slagging and fouling issues through the blending of CFA with BFA. Simultaneously, the fusion temperature increased from 1181 °C to 1207 °C. CFA was found to increase the AFT of the BFA from 1197 °C to 1247 °C, mitigating their propensity. This suggests that a blend of 75CFA + 25BFA results in lower to medium range of slagging and fouling. However, AFI and BAI indicate a slightly higher range. AFT analysis further validates the conclusions drawn from the indices. The ternary phase diagram shows that the ash's melting point increases in the optimum blend. This is attributed to a reduced content of K2O (<15 %) and increased proportions of >50 % CaO and SiO2, effectively inhibiting slagging, agglomeration, and deposition. Meanwhile, the blend maintains a medium level of acidity and susceptively to corrosion, as observed in the case of 75CFA + 25BFA. The identification of optimal blend ratios can be anticipated to offer essential solutions for future research, aiming to ensure smooth industrial operations and regulatory compliance in power plants.

10.
J Forensic Sci ; 69(1): 301-315, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37697935

RESUMO

Digitalization has increased the number of video surveillance systems that sometimes capture crime images. Traditional methods of human height estimation use projective geometry. However, sometimes they cannot be used because the video camera surveillance system is not available or has been moved and there are no reference lines on the frame. Scientific studies have developed a new method for human height estimation using 3D laser scanning. This model necessarily requires a series of approximations, which increase the final measurement error. To overcome this problem, in the present study, images of a subject are projected directly on the 3D model, estimating the height of the subject. This article describes the methodological approach adopted through the analysis of a real case study in a controlled environment executed by Carabinieri Forensic Investigation Department (Italy). The aim is to obtain a human anthropometric measure derived from frames extracted from the videos associated with the digital survey of the framed area obtained with 3D laser scanning and point cloud analysis. The result is the height estimation of five subjects filmed by a camera obtained through the combination of 2D images extracted by a DVR/surveillance systems with 3D laser scanning. Results show that most estimated measurements are less than the real measurement of the subject; it also depends on the posture of the subject while walking. Furthermore, results shows the differences between the real height and the estimated height with a statistical approach.


Assuntos
Imageamento Tridimensional , Lasers , Humanos , Imageamento Tridimensional/métodos , Gravação de Videoteipe , Itália
11.
BMC Cancer ; 23(1): 1010, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858132

RESUMO

BACKGROUND: Metastatic disease in tumors originating from the gastrointestinal tract can exhibit varying degrees of tumor burden at presentation. Some patients follow a less aggressive disease course, characterized by a limited number of metastatic sites, referred to as "oligo-metastatic disease" (OMD). The precise biological characteristics that define the oligometastatic behavior remain uncertain. In this study, we present a protocol designed to prospectively identify OMD, with the aim of proposing novel therapeutic approaches and monitoring strategies. METHODS: The PREDICTION study is a monocentric, prospective, observational investigation. Enrolled patients will receive standard treatment, while translational activities will involve analysis of the tumor microenvironment and genomic profiling using immunohistochemistry and next-generation sequencing, respectively. The first primary objective (descriptive) is to determine the prevalence of biological characteristics in OMD derived from gastrointestinal tract neoplasms, including high genetic concordance between primary tumors and metastases, a significant infiltration of T lymphocytes, and the absence of clonal evolution favoring specific driver genes (KRAS and PIK3CA). The second co-primary objective (analytic) is to identify a prognostic score for true OMD, with a primary focus on metastatic colorectal cancer. The score will comprise genetic concordance (> 80%), high T-lymphocyte infiltration, and the absence of clonal evolution favoring driver genes. It is hypothesized that patients with true OMD (score 3+) will have a lower rate of progression/recurrence within one year (20%) compared to those with false OMD (80%). The endpoint of the co-primary objective is the rate of recurrence/progression at one year. Considering a reasonable probability (60%) of the three factors occurring simultaneously in true OMD (score 3+), using a significance level of α = 0.05 and a test power of 90%, the study requires a minimum enrollment of 32 patients. DISCUSSION: Few studies have explored the precise genetic and biological features of OMD thus far. In clinical settings, the diagnosis of OMD is typically made retrospectively, as some patients who undergo intensive treatment for oligometastases develop polymetastatic diseases within a year, while others do not experience disease progression (true OMD). In the coming years, the identification of true OMD will allow us to employ more personalized and comprehensive strategies in cancer treatment. TRIAL REGISTRATION: ClinicalTrials.gov ID NCT05806151.


Assuntos
Neoplasias Gastrointestinais , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Neoplasias Gastrointestinais/genética , Microambiente Tumoral
12.
Radiol Med ; 128(11): 1347-1371, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37801198

RESUMO

OBJECTIVE: The objective of the study was to evaluate the accuracy of radiomics features obtained by MR images to predict Breast Cancer Histological Outcome. METHODS: A total of 217 patients with malignant lesions were analysed underwent MRI examinations. Considering histological findings as the ground truth, four different types of findings were used in both univariate and multivariate analyses: (1) G1 + G2 vs G3 classification; (2) presence of human epidermal growth factor receptor 2 (HER2 + vs HER2 -); (3) presence of the hormone receptor (HR + vs HR -); and (4) presence of luminal subtypes of breast cancer. RESULTS: The best accuracy for discriminating HER2 + versus HER2 - breast cancers was obtained considering nine predictors by early phase T1-weighted subtraction images and a decision tree (accuracy of 88% on validation set). The best accuracy for discriminating HR + versus HR - breast cancers was obtained considering nine predictors by T2-weighted subtraction images and a decision tree (accuracy of 90% on validation set). The best accuracy for discriminating G1 + G2 versus G3 breast cancers was obtained considering 16 predictors by early phase T1-weighted subtraction images in a linear regression model with an accuracy of 75%. The best accuracy for discriminating luminal versus non-luminal breast cancers was obtained considering 27 predictors by early phase T1-weighted subtraction images and a decision tree (accuracy of 94% on validation set). CONCLUSIONS: The combination of radiomics analysis and artificial intelligence techniques could be used to support physician decision-making in prediction of Breast Cancer Histological Outcome.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Inteligência Artificial , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
13.
Diagnostics (Basel) ; 13(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37761243

RESUMO

Neuroendocrine neoplasms (NENs) are a group of lesions originating from cells of the diffuse neuroendocrine system. NENs may involve different sites, including the gastrointestinal tract (GEP-NENs). The incidence and prevalence of GEP-NENs has been constantly rising thanks to the increased diagnostic power of imaging and immuno-histochemistry. Despite the plethora of biochemical markers and imaging techniques, the prognosis and therapeutic choice in GEP-NENs still represents a challenge, mainly due to the great heterogeneity in terms of tumor lesions and clinical behavior. The concept that biomedical images contain information about tissue heterogeneity and pathological processes invisible to the human eye is now well established. From this substrate comes the idea of radiomics. Computational analysis has achieved promising results in several oncological settings, and the use of radiomics in different types of GEP-NENs is growing in the field of research, yet with conflicting results. The aim of this narrative review is to provide a comprehensive update on the role of radiomics on GEP-NEN management, focusing on the main clinical aspects analyzed by most existing reports: predicting tumor grade, distinguishing NET from other tumors, and prognosis assessment.

14.
Sci Total Environ ; 905: 167124, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37722433

RESUMO

Due to concerns over rising emissions of carbon dioxide (CO2) from fossil fuel utilization, there has been a strong emphasis on the development of a safe, economical, practical method of carbon capture utilization and storage (CCUS). One way to reduce these CO2 emissions is underground geological sequestration in depleted oil fields or exhausted reservoirs. CO2 injection into oil reservoirs is an established technology, these reservoirs not only offer the potential for high storage of CO2 but this process could also target a large amount of oil and gas recovery through a technique called enhanced oil recovery (EOR). The main objective of this research was to evaluate the storage potential of CO2 in the depleted oil field while also investigating the effect of CO2 injection on reservoir pressure maintenance, and additional oil and gas recovery, in the same field. This paper presented the model of CO2 flooding based on the CO2 displacement mechanism with different scenarios of natural depletion, CO2 injection, and water injection simulated by the ECLIPSE 300 reservoir simulator, and the results of different scenarios were compared. Results of this study showed the site selected for CO2 injection has the potential to store more than 9 billion cubic feet (BCF) of CO2 in each case and witnessed improved gas recovery, while also having a major effect on reservoir pressure maintenance where pressure increased from 2120 psi to 6584 psi. The finding of this work ought to help in preparing for future improvement in underground geological sequestration of CO2 in depleted fields with the same field specifications.

15.
Radiol Med ; 128(11): 1310-1332, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37697033

RESUMO

OBJECTIVE: The aim of this study was the evaluation radiomics analysis efficacy performed using computed tomography (CT) and magnetic resonance imaging in the prediction of colorectal liver metastases patterns linked to patient prognosis: tumor growth front; grade; tumor budding; mucinous type. Moreover, the prediction of liver recurrence was also evaluated. METHODS: The retrospective study included an internal and validation dataset; the first was composed by 119 liver metastases from 49 patients while the second consisted to 28 patients with single lesion. Radiomic features were extracted using PyRadiomics. Univariate and multivariate approaches including machine learning algorithms were employed. RESULTS: The best predictor to identify tumor growth was the Wavelet_HLH_glcm_MaximumProbability with an accuracy of 84% and to detect recurrence the best predictor was wavelet_HLH_ngtdm_Complexity with an accuracy of 90%, both extracted by T1-weigthed arterial phase sequence. The best predictor to detect tumor budding was the wavelet_LLH_glcm_Imc1 with an accuracy of 88% and to identify mucinous type was wavelet_LLH_glcm_JointEntropy with an accuracy of 92%, both calculated on T2-weigthed sequence. An increase statistically significant of accuracy (90%) was obtained using a linear weighted combination of 15 predictors extracted by T2-weigthed images to detect tumor front growth. An increase statistically significant of accuracy at 93% was obtained using a linear weighted combination of 11 predictors by the T1-weigthed arterial phase sequence to classify tumor budding. An increase statistically significant of accuracy at 97% was obtained using a linear weighted combination of 16 predictors extracted on CT to detect recurrence. An increase statistically significant of accuracy was obtained in the tumor budding identification considering a K-nearest neighbors and the 11 significant features extracted T1-weigthed arterial phase sequence. CONCLUSIONS: The results confirmed the Radiomics capacity to recognize clinical and histopathological prognostic features that should influence the choice of treatments in colorectal liver metastases patients to obtain a more personalized therapy.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Prognóstico , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Colorretais/diagnóstico por imagem , Aprendizado de Máquina
16.
Sci Total Environ ; 898: 165605, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37474051

RESUMO

The cement industry contributes substantially to world emissions. Sustainable and circular practices are adopted globally to mitigate such emissions. Developing countries like Pakistan lack adaptation to circular and sustainable practices. The study proposes an alternative mix of coal and crop residues that can be used for cement production. The study aims to find the best mixtures of coal with crop residue for combustion purposes in cement industries. The Life Cycle Assessment (LCA) and Life Cycle Cost Analysis (LCCA) are implemented for the environmental and economic viability of the proposed material mixtures. Moreover, the study seeks to explore risks associated with the implementation of circular practices in the cement industry of a developing country. The study adopts Modified Safety Improvement Risk Assessment (SIRA) for assessing the risks. The results suggest that the partial replacement of coal with bagasse is the most viable mixture with lower environmental emissions and is economically feasible among other alternate mixtures. In terms of risk assessment, there is a lack of governmental support for adopting circular economy (CE) practices and profit uncertainties of these CE practices.

18.
Semin Ultrasound CT MR ; 44(3): 117-125, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37245878

RESUMO

The assessment of tumor response, after neoadjuvant radiochemotherapy (n-CRT), permits the stratification of patients for the proper therapeutical management. Although histopathology analysis of the surgical speciemen is considered the gold standard for assessing tumor response, magnetic resonance imaging (MRI), with its significant developments in technical imaging, have allowed an increase in accuracy for the evaluation of response. MRI provides a radiological tumor regression grade (mrTRG) that is correlated with the pathologic tumor regression grade (pTRG). Functional MRI parameters have additional impending in early prediction of the efficacy of therapy. Some of functional methodologies are already part of clinical practice: diffusion-weighted MRI (DW-MRI) and perfusion imaging (dynamic contrast enhanced MRI [DCE-MRI]).


Assuntos
Imagem de Difusão por Ressonância Magnética , Terapia Neoadjuvante , Neoplasias Retais , Humanos , Imagem de Perfusão , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/patologia , Neoplasias Retais/terapia , Estadiamento de Neoplasias , Terapia Neoadjuvante/métodos
19.
J Clin Med ; 12(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36902633

RESUMO

In modern clinical practice, there is an increasing dependence on imaging techniques in several settings, and especially during emergencies. Consequently, there has been an increase in the frequency of imaging examinations and thus also an increased risk of radiation exposure. In this context, a critical phase is a woman's pregnancy management that requires a proper diagnostic assessment to reduce radiation risk to the fetus and mother. The risk is greatest during the first phases of pregnancy at the time of organogenesis. Therefore, the principles of radiation protection should guide the multidisciplinary team. Although diagnostic tools that do not employ ionizing radiation, such as ultrasound (US) and magnetic resonance imaging (MRI) should be preferred, in several settings as polytrauma, computed tomography (CT) nonetheless remains the examination to perform, beyond the fetus risk. In addition, protocol optimization, using dose-limiting protocols and avoiding multiple acquisitions, is a critical point that makes it possible to reduce risks. The purpose of this review is to provide a critical evaluation of emergency conditions, e.g., abdominal pain and trauma, considering the different diagnostic tools that should be used as study protocols in order to control the dose to the pregnant woman and fetus.

20.
Infect Agent Cancer ; 18(1): 18, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927442

RESUMO

In this narrative review, we reported un up-to-date on the role of radiomics to assess prognostic features, which can impact on the liver metastases patient treatment choice. In the liver metastases patients, the possibility to assess mutational status (RAS or MSI), the tumor growth pattern and the histological subtype (NOS or mucinous) allows a better treatment selection to avoid unnecessary therapies. However, today, the detection of these features require an invasive approach. Recently, radiomics analysis application has improved rapidly, with a consequent growing interest in the oncological field. Radiomics analysis allows the textural characteristics assessment, which are correlated to biological data. This approach is captivating since it should allow to extract biological data from the radiological images, without invasive approach, so that to reduce costs and time, avoiding any risk for the patients. Several studies showed the ability of Radiomics to identify mutational status, tumor growth pattern and histological type in colorectal liver metastases. Although, radiomics analysis in a non-invasive and repeatable way, however features as the poor standardization and generalization of clinical studies results limit the translation of this analysis into clinical practice. Clear limits are data-quality control, reproducibility, repeatability, generalizability of results, and issues related to model overfitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...