Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Biol Endocrinol ; 5: 21, 2007 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-17550604

RESUMO

BACKGROUND: Activin and inhibin are glycoproteins structurally related to the transforming growth factor-beta superfamily. These peptides were first described as factors that regulate the follicle-stimulating hormone (FSH) at the pituitary level. The possible role of inhibin and activin, at the ovarian level, in mediating the stimulatory actions of a Fundulus pituitary extract (FPE) and 17alpha,20beta-dihydroprogesterone (DHP) on oocyte maturation was investigated in this study. METHODS: In vitro culture of ovarian follicles and induction of oocyte maturation were carried out in 75% Leibovitz L-15 medium. Follicles or denuded oocytes were exposed to FPE, inhibin, activin, ethanol vehicle (control group), or DHP. The competence of the follicles or denuded oocytes to respond to the hormones was assessed by scoring germinal vesicle breakdown (GVBD) used as an indication of the reinitiation of meiosis or oocyte maturation. DHP level was measured by radioimmunoassay. RESULTS: Addition of FPE promoted the synthesis of DHP by the granulose cells of fully grown ovarian follicles and thus stimulated GVBD in the oocyte. Presence of porcine inhibin did not hinder the synthesis of DHP stimulated by FPE, although it did inhibit the subsequent GVBD in a dose-dependent manner, suggesting that the action of inhibin was at the oocyte level. Similarly to the findings with FPE, inhibin also blocked the DHP-induced GVBD in intact follicles, as well as the spontaneous and steroid-induced GVBD of denuded oocyte. Inhibin straightforwardly blocked the response to a low dose of DHP throughout the culture period, while higher doses of the steroid appeared to overcome the inhibitory effect especially at later times. In contrast to inhibin, recombinant human activin A significantly enhanced DHP-induced GVBD in a dose-dependent manner after 48 hr, although activin alone was not able to induce GVBD without the presence of the steroid. CONCLUSION: Taking together with our previous studies that demonstrate the presence of activin/inhibin subunits in the ovary of F. heteroclitus, these in vitro findings indicate that inhibin and activin are local regulators in the teleost ovary and have opposing effects in modulating oocyte maturation.


Assuntos
20-alfa-Di-Hidroprogesterona/farmacologia , Ativinas/metabolismo , Fundulidae/metabolismo , Gonadotropinas/farmacologia , Inibinas/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Oócitos/efeitos dos fármacos
2.
Reprod Biol Endocrinol ; 2: 14, 2004 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15040801

RESUMO

Fractionation and characterization of gonadotropins (GtH) from Fundulus heteroclitus pituitary extracts were carried out using a biocompatible liquid chromatographic procedure (Pharmacia FPLC system). Chromatographic fractions were monitored for gonadotropic activities (induction of oocyte maturation and steroid production) using homologous follicle bioassays in vitro. Size-exclusion chromatography eluted gonadotropic activity in one major protein peak (Mr approximately 30,000). Anion-exchange and hydrophobic-interaction chromatography (HIC) yielded two distinct peaks of 17beta-estradiol (E2)- and 17alpha-hydroxy,20beta-dihydroprogesterone (DHP)-promoting activity with associated oocyte maturation. Two-dimensional chromatography (chromatofocusing followed by HIC) resolved pituitary extracts into two active fractions; both induced E2 synthesis, but one was relatively poor in eliciting DHP and testosterone production. Thus, using homologous bioassays, at least two quantitatively different gonadotropic (steroidogenic) activities: an E2-promoting gonadotropin (GtH I-like) and a DHP-promoting gonadotropin (GtH II-like), which has a lower isoelectric point but greater hydrophobicity than the former, can be distinguished from F. heteroclitus pituitaries by a variety of chromatographic procedures. This study complements previous biochemical and molecular data in F. heteroclitus and substantiates the duality of GtH function in a multiple-spawning teleost.


Assuntos
Cromatografia/métodos , Fundulidae , Gonadotropinas Hipofisárias/análise , 20-alfa-Di-Hidroprogesterona/biossíntese , Animais , Bioensaio/métodos , Estradiol/biossíntese , Feminino , Gonadotropinas Hipofisárias/farmacologia , Masculino , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Hipófise/química , Testosterona/biossíntese
3.
Dev Growth Differ ; 30(6): 611-618, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37282213

RESUMO

Previous studies demonstrated that estradiol interferes with pituitary-induced progesterone production and oocyte maturation in cultured amphibian (Rana pipiens) ovarian follicles. To elucidate the mode of action of estradiol in modulating follicular progesterone accumulation we have examined its effects on cAMP-induced progesterone production and enzymatic conversion of pregnenolone to progesterone by 3ß-hydroxysteroid dehydrogenase (3ß-HSD). Follicular cAMP levels were manipulated with forskolin (an adenylate cyclase activator), isobutyl methyl xanthine (IBMX-phosphodiesterase inhibitor) and exogenously added cAMP. Progesterone production induced by forskolin alone or forskolin in combination with frog pituitary homogenate (FPH) was inhibited by estrogen. Addition of estradiol to culture medium markedly inhibited follicular progesterone accumulation following treatment of follicles with cAMP and IBMX. In the presence of exogenous pregnenolone, non-FPH stimulated ovarian follicles effectively converted the 3ß-HSD substrate to progesterone. Treatment of follicles with estradiol inhibited conversion of pregnenolone to progesterone. The results indicate that estradiol acts, following FPH stimulation, at one or more steps subsequent to elevation of cAMP levels to regulate intrafollicular progesterone accumulation and oocyte maturation. Estrogen appears to directly influence the enzymatic (3ß-HSD) conversion of pregnenolone to progesterone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...