Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 105(3): e4244, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272487

RESUMO

Close-kin mark-recapture (CKMR) is a method analogous to traditional mark-recapture but without requiring recapture of individuals. Instead, multilocus genotypes (genetic marks) are used to identify related individuals in one or more sampling occasions, which enables the opportunistic use of samples from harvested wildlife. To apply the method accurately, it is important to build appropriate CKMR models that do not violate assumptions linked to the species' and population's biology and sampling methods. In this study, we evaluated the implications of fitting overly simplistic CKMR models to populations with complex reproductive success dynamics or selective sampling. We used forward-in-time, individual-based simulations to evaluate the accuracy and precision of CKMR abundance and survival estimates in species with different longevities, mating systems, and sampling strategies. Simulated populations approximated a range of life histories among game species of North America with lethal sampling to evaluate the potential of using harvested samples to estimate population size. Our simulations show that CKMR can yield nontrivial biases in both survival and abundance estimates, unless influential life history traits and selective sampling are explicitly accounted for in the modeling framework. The number of kin pairs observed in the sample, in combination with the type of kinship used in the model (parent-offspring pairs and/or half-sibling pairs), can affect the precision and/or accuracy of the estimates. CKMR is a promising method that will likely see an increasing number of applications in the field as costs of genetic analysis continue to decline. Our work highlights the importance of applying population-specific CKMR models that consider relevant demographic parameters, individual covariates, and the protocol through which individuals were sampled.


Assuntos
Densidade Demográfica , Humanos , Viés , Genótipo , América do Norte
2.
Ecol Evol ; 12(7): e9125, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35898426

RESUMO

Although most prey have multiple predator species, few studies have quantified how prey respond to the temporal niches of multiple predators which pose different levels of danger. For example, intraspecific variation in diel activity allows white-tailed deer (Odocoileus virginianus) to reduce fawn activity overlap with coyotes (Canis latrans) but finding safe times of day may be more difficult for fawns in a multi-predator context. We hypothesized that within a multi-predator system, deer would allocate antipredation behavior optimally based on combined mortality risk from multiple sources, which would vary depending on fawn presence. We measured cause-specific mortality of 777 adult (>1-year-old) and juvenile (1-4-month-old) deer and used 300 remote cameras to estimate the activity of deer, humans, and predators including American black bears (Ursus americanus), bobcats (Lynx rufus), coyotes, and wolves (Canis lupus). Predation and vehicle collisions accounted for 5.3 times greater mortality in juveniles (16% mortality from bears, coyotes, bobcats, wolves, and vehicles) compared with adults (3% mortality from coyotes, wolves, and vehicles). Deer nursery groups (i.e., ≥1 fawn present) were more diurnal than adult deer without fawns, causing fawns to have 24-38% less overlap with carnivores and 39% greater overlap with humans. Supporting our hypothesis, deer nursery groups appeared to optimize diel activity to minimize combined mortality risk. Temporal refuge for fawns was likely the result of carnivores avoiding humans, simplifying diel risk of five species into a trade-off between diurnal humans and nocturnal carnivores. Functional redundancy among multiple predators with shared behaviors may partially explain why white-tailed deer fawn predation rates are often similar among single- and multi-predator systems.

3.
Ecol Evol ; 12(5): e8875, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600694

RESUMO

Understanding the types and magnitude of human-caused mortality is essential for maintaining viable large carnivore populations. We used a database of cause-specific mortality to examine how hunting regulations and landscape configurations influenced human-caused mortality of North American gray wolves (Canis lupus). Our dataset included 21 studies that monitored the fates of 3564 wolves and reported 1442 mortalities. Human-caused mortality accounted for 61% of mortality overall, with 23% due to illegal harvest, 16% due to legal harvest, and 12% the result of management removal. The overall proportion of anthropogenic wolf mortality was lowest in areas with an open hunting season compared to areas with a closed hunting season or mixed hunting regulations, suggesting that harvest mortality was neither fully additive nor compensatory. Proportion of mortality from management removal was reduced in areas with an open hunting season, suggesting that legal harvest may reduce human-wolf conflicts or alternatively that areas with legal harvest have less potential for management removals (e.g., less livestock depredation). Proportion of natural habitat was negatively correlated with the proportion of anthropogenic and illegal harvest mortality. Additionally, the proportion of mortality due to illegal harvest increased with greater natural habitat fragmentation. The observed association between large patches of natural habitat and reductions in several sources of anthropogenic wolf mortality reiterate the importance of habitat preservation to maintain wolf populations. Furthermore, effective management of wolf populations via implementation of harvest may reduce conflict with humans. Effective wolf conservation will depend on holistic strategies that integrate ecological and socioeconomic factors to facilitate their long-term coexistence with humans.

4.
Ecol Evol ; 12(2): e8542, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35154647

RESUMO

The parallel niche release hypothesis (PNR) indicates that reduced competition with dominant competitors results in greater density and niche breadth of subordinate competitors and which may support an adaptive advantage.We assessed support for the PNR by evaluating relationships between variation in niche breadth and intra- and interspecific density (an index of competition) of wolves (Canis lupus) coyotes (C. latrans), and bobcats (Lynx rufus).We estimated population density (wolf track surveys, coyote howl surveys, and bobcat hair snare surveys) and variability in space use (50% core autocorrelated kernel density home range estimators), temporal activity (hourly and overnight speed), and dietary (isotopic δ13C and δ15N) niche breadth of each species across three areas of varying wolf density in the Upper Peninsula of Michigan, USA, 2010-2019.Densities of wolves and coyotes were inversely related, and increased variability in space use, temporal activity, and dietary niche breadth of coyotes was associated with increased coyote density and decreased wolf density supporting the PNR. Variability in space use and temporal activity of wolves and dietary niche breadth of bobcats also increased with increased intraspecific density supporting the PNR.Through demonstrating decreased competition between wolves and coyotes and increased coyote niche breadth and density, our study provides multidimensional support for the PNR. Knowledge of the relationship between niche breadth and population density can inform our understanding of the role of competition in shaping the realized niche of species.

5.
Ecology ; 102(11): e03494, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34309013

RESUMO

Trophic cascades reportedly structure ecological communities through indirect species interactions. Though the predator-herbivore-autotroph relationship has received much attention, mechanistic evidence supporting intraguild trophic cascades is rare. We established 348 remote camera sites (1 August-5 September 2019) across seven study areas of varying wolf (Canis lupus) density including one study area where wolves were absent in northern Michigan, USA. Using multi-species occupancy modeling at species-relevant spatial scales, we evaluated the hypothesis that increased wolf occurrence suppresses coyote (C. latrans) occurrence with corresponding increased red fox (Vulpes vulpes) occurrence mediated by land cover edge density, human presence, and temporal partitioning. Remote cameras recorded >600,000 images and included 6,370, 10,137, and 4,876 detections of wolves, coyotes, and foxes, respectively. Fox occupancy probability was more than three times as high (0.29) at camera sites where wolves were present, relative to sites wolves were absent (0.09). Pairwise species interactions supported expected size-based dominance patterns among canids and insignificant effects were directionally consistent with reported reduced strength of top-down effects in peripheral wolf range. Increased edge density also increased co-occurrence of coyote and wolves, likely a function of increased prey availability and refugia for coyotes. Though foxes occurred in spatial proximity to wolves, competition was limited by greater temporal partitioning than observed between coyotes and foxes that were spatially segregated. Collectively, our results provide marginal support for the reported trophic cascade among wolves, coyotes, and foxes wherein top-down effects may be reduced near the edge of current wolf distributions. As predators continue to recolonize portions of their historic range, knowledge of the effects on intraguild predators has implications for species management and predicting prey population responses.


Assuntos
Coiotes , Lobos , Animais , Raposas , Michigan
6.
Sci Rep ; 11(1): 12146, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108524

RESUMO

Where two sympatric species compete for the same resource and one species is dominant, there is potential for the subordinate species to be affected through interference competition or energetic costs of avoiding predation. Fishers (Pekania pennanti) and American martens (Martes americana) often have high niche overlap, but fishers are considered dominant and potentially limiting to martens. We observed presence and vigilance of fishers and martens at winter carcass sites using remote cameras in Michigan, USA, to test the hypothesis that interference competition from fishers creates a landscape of fear for martens. Within winters, fishers co-occupied 78-88% of sites occupied by martens, and martens co-occupied 79-88% of sites occupied by fishers. Fishers displaced martens from carcasses during 21 of 6117 marten visits, while martens displaced fishers during 0 of 1359 fisher visits. Martens did not alter diel activity in response to fisher use of sites. Martens allocated 37% of time to vigilance compared to 23% for fishers, and martens increased vigilance up to 8% at sites previously visited by fishers. Fishers increased vigilance by up to 8% at sites previously visited by martens. Our results indicate that fishers were dominant over martens, and martens had greater baseline perception of risk than fishers. However, fishers appeared to be also affected as the dominant competitor by putting effort into scanning for martens. Both species appeared widespread and common in our study area, but there was no evidence that fishers spatially or temporally excluded martens from scavenging at carcasses other than occasional short-term displacement when a fisher was present. Instead, martens appeared to mitigate risk from fishers by using vigilance and short-term avoidance. Multiple short-term anti-predator behaviors within a landscape of fear may facilitate coexistence among carnivore species.

7.
Ecol Evol ; 11(3): 1413-1431, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33598141

RESUMO

Interference competition occurs when two species have similar resource requirements and one species is dominant and can suppress or exclude the subordinate species. Wolves (Canis lupus) and coyotes (C. latrans) are sympatric across much of their range in North America where white-tailed deer (Odocoileus virginianus) can be an important prey species. We assessed the extent of niche overlap between wolves and coyotes using activity, diet, and space use as evidence for interference competition during three periods related to the availability of white-tailed deer fawns in the Upper Great Lakes region of the USA. We assessed activity overlap (Δ) with data from accelerometers onboard global positioning system (GPS) collars worn by wolves (n = 11) and coyotes (n = 13). We analyzed wolf and coyote scat to estimate dietary breadth (B) and food niche overlap (α). We used resource utilization functions (RUFs) with canid GPS location data, white-tailed deer RUFs, ruffed grouse (Bonasa umbellus) and snowshoe hare (Lepus americanus) densities, and landscape covariates to compare population-level space use. Wolves and coyotes exhibited considerable overlap in activity (Δ = 0.86-0.92), diet (B = 3.1-4.9; α = 0.76-1.0), and space use of active and inactive RUFs across time periods. Coyotes relied less on deer as prey compared to wolves and consumed greater amounts of smaller prey items. Coyotes exhibited greater population-level variation in space use compared to wolves. Additionally, while active and inactive, coyotes exhibited greater selection of some land covers as compared to wolves. Our findings lend support for interference competition between wolves and coyotes with significant overlap across resource attributes examined. The mechanisms through which wolves and coyotes coexist appear to be driven largely by how coyotes, a generalist species, exploit narrow differences in resource availability and display greater population-level plasticity in resource use.

8.
Sci Rep ; 9(1): 13438, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530832

RESUMO

Acquisition of resources can be costly and individuals are predicted to optimize foraging strategies to maximize net energy gain. Wolves (Canis lupus) would be expected to scavenge on subsidies from anthropogenic resources when these resources provide an energetic benefit over the capture of wild prey. We examined the effects of subsidies from anthropogenic resources in the form of livestock carcass dumps (LCDs) on wolf space use, activity, tortuosity, and diet in portions of North America's northern hardwood/boreal ecosystem. We fitted 19 wolves with global positioning system collars during May-August of 2009-2011 and 2013-2015. Wolves with LCDs within their home ranges used areas adjacent to LCDs greater than non-LCD sites and had decreased home ranges and activity as compared to wolves without LCDs in their home ranges. Additionally, cattle comprised at least 22% of wolf diet from scavenging in areas with LCDs present as compared to no cattle in the diet of wolves without access to LCDs. Subsidies from anthropogenic resources in the form of LCDs can serve as attractants for wolves and alter wolf diet, activity, and ranging behavior. Apex predators may alter their behavior where subsidies from anthropogenic resources occur and management of these subsidies should be considered when attempting to reduce the impacts of humans on wolf behavior.


Assuntos
Comportamento Alimentar/fisiologia , Comportamento Predatório/fisiologia , Lobos/fisiologia , Animais , Bovinos , Ecossistema , Feminino , Sistemas de Informação Geográfica , Comportamento de Retorno ao Território Vital , Gado , Masculino , Michigan
9.
PLoS One ; 13(9): e0203651, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30216386

RESUMO

Infanticide occurs in a variety of animal species and infanticide risk has large implications for the evolution of behavior. Further, the sex hypothesis of sexual segregation predicts that for species in which infanticide occurs, females with dependent young will avoid males to reduce risk of sexually-selected infanticide. Infanticide risk-avoidance behavior has been studied primarily in social species, but also occurs in some solitary species. We used generalized linear mixed models to determine if space use and movements of female American black bears (Ursus americanus) during the breeding season were consistent with the sex hypothesis of sexual segregation in the Upper Peninsula of Michigan, USA. Space use and movements of female black bears (n = 16) were not consistent with avoidance behavior to reduce sexually-selected infanticide risk. Females with cubs occupied core areas (mean = 4.64 km2, standard error [SE] = 1.28) and home ranges (mean = 19.46 km2, SE = 5.10) of similar size to females without cubs (core area [mean = 4.11 km2, SE = 0.59]; home range [mean = 16.07 km2, SE = 2.26]), and those core areas and home ranges were not in areas with lesser relative probability of male use. Additionally, females with cubs did not reduce movements during times of day when male movements were greatest. As female bears do avoid potentially infanticidal males in populations with greater levels of infanticide, female black bears may exhibit variation in avoidance behavior based on the occurrence of infanticide.


Assuntos
Comportamento Animal , Ursidae/fisiologia , Distribuição Animal , Animais , Aprendizagem da Esquiva , Feminino , Comportamento de Retorno ao Território Vital , Masculino , Michigan , Estações do Ano
10.
PLoS One ; 10(11): e0143347, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26581103

RESUMO

Factors relevant to resource selection in carnivores may vary across spatial and temporal scales, both in magnitude and rank. Understanding relationships among carnivore occupancy, prey presence, and habitat characteristics, as well as their interactions across multiple scales, is necessary to improve our understanding of resource selection and predict population changes. We used a multi-scale dynamic hierarchical co-occurrence model with camera data to study bobcat and snowshoe hare occupancy in the Upper Peninsula of Michigan during winter 2012-2013. Bobcat presence was influenced at the local scale by snowshoe hare presence, and by road density at the local and larger scale when hare were absent. Hare distribution was related primarily to vegetation cover types, and detectability varied in space and time. Bobcat occupancy dynamics were influenced by different factors depending on the spatial scale considered and the resource availability context. Moreover, considering observed co-occurrence, we suggest that bobcat presence had a greater effect on hare occupancy than hare presence on bobcat occupancy. Our results highlight the importance of studying carnivore distributions in the context of predator-prey relationships and its interactions with environmental covariates at multiple spatial scales. Our approach can be applied to other carnivore species to provide insights beneficial for management and conservation.


Assuntos
Lebres/fisiologia , Lynx/fisiologia , Comportamento Predatório/fisiologia , Estações do Ano , Animais , Ecossistema , Michigan , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...