Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 186: 108575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38507935

RESUMO

Although toxicology uses animal models to represent real-world human health scenarios, a critical translational gap between laboratory-based studies and epidemiology remains. In this study, we aimed to understand the toxicoepigenetic effects on DNA methylation after developmental exposure to two common toxicants, the phthalate di(2-ethylhexyl) phthalate (DEHP) and the metal lead (Pb), using a translational paradigm that selected candidate genes from a mouse study and assessed them in four human birth cohorts. Data from mouse offspring developmentally exposed to DEHP, Pb, or control were used to identify genes with sex-specific sites with differential DNA methylation at postnatal day 21. Associations of human infant DNA methylation in homologous mouse genes with prenatal DEHP or Pb were examined with a meta-analysis. Differential methylation was observed on 6 cytosines (adjusted-p < 0.05) and 90 regions (adjusted-p < 0.001). This translational approach offers a unique method that can detect conserved epigenetic differences that are developmentally susceptible to environmental toxicants.


Assuntos
Metilação de DNA , Epigênese Genética , Chumbo , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Lactente , Masculino , Camundongos , Gravidez , Dietilexilftalato/toxicidade , Metilação de DNA/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Epigênese Genética/efeitos dos fármacos , Chumbo/toxicidade , Ácidos Ftálicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
2.
Environ Mol Mutagen ; 65(1-2): 55-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523457

RESUMO

Prostate cancer is the leading incident cancer among men in the United States. Firefighters are diagnosed with this disease at a rate 1.21 times higher than the average population. This increased risk may result from occupational exposures to many toxicants, including per- and polyfluoroalkyl substances (PFAS). This study assessed the association between firefighting as an occupation in general or PFAS serum levels, with DNA methylation. Only genomic regions previously linked to prostate cancer risk were selected for analysis: GSTP1, Alu repetitive elements, and the 8q24 chromosomal region. There were 444 male firefighters included in this study, with some analyses being conducted on fewer participants due to missingness. Statistical models were used to test associations between exposures and DNA methylation at CpG sites in the selected genomic regions. Exposure variables included proxies of cumulative firefighting exposures (incumbent versus academy status and years of firefighting experience) and biomarkers of PFAS exposures (serum concentrations of 9 PFAS). Proxies of cumulative exposures were associated with DNA methylation at 15 CpG sites and one region located within FAM83A (q-value <0.1). SbPFOA was associated with 19 CpG sites (q < 0.1), but due to low detection rates, this PFAS was modeled as detected versus not detected in serum. Overall, there is evidence that firefighting experience is associated with differential DNA methylation in prostate cancer risk loci, but this study did not find evidence that these differences are due to PFAS exposures specifically.


Assuntos
Fluorocarbonos , Exposição Ocupacional , Neoplasias da Próstata , Humanos , Masculino , Metilação de DNA/genética , Exposição Ocupacional/efeitos adversos , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/genética , DNA , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Proteínas de Neoplasias
3.
Exposome ; 3(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333730

RESUMO

The accumulation of every day exposures can impact health across the life course, but our understanding of such exposures is impeded by our ability to delineate the relationship between an individual's early life exposome and later life health effects. Measuring the exposome is challenging. Exposure assessed at a given time point captures a snapshot of the exposome but does not represent the full spectrum of exposures across the life course. In addition, the assessment of early life exposures and their effects is often further challenged by lack of relevant samples and the time gap between exposures and related health outcomes in later life. Epigenetics, specifically DNA methylation, has the potential to overcome these barriers as environmental epigenetic perturbances can be retained through time. In this review, we describe how DNA methylation can be framed in the world of the exposome. We offer three compelling examples of common environmental exposures, including cigarette smoke, the endocrine active compound bisphenol A (BPA), and the metal lead (Pb), to illustrate the application of DNA methylation as a proxy to measure the exposome. We discuss areas for future explorations and current limitations of this approach. Epigenetic profiling is a promising and rapidly developing tool and field of study, offering us a unique and powerful way to assess the early life exposome and its effects across different life stages.

4.
Front Cell Dev Biol ; 11: 1198148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384255

RESUMO

Introduction: The developing epigenome changes rapidly, potentially making it more sensitive to toxicant exposures. DNA modifications, including methylation and hydroxymethylation, are important parts of the epigenome that may be affected by environmental exposures. However, most studies do not differentiate between these two DNA modifications, possibly masking significant effects. Methods: To investigate the relationship between DNA hydroxymethylation and developmental exposure to common contaminants, a collaborative, NIEHS-sponsored consortium, TaRGET II, initiated longitudinal mouse studies of developmental exposure to human-relevant levels of the phthalate plasticizer di(2-ethylhexyl) phthalate (DEHP), and the metal lead (Pb). Exposures to 25 mg DEHP/kg of food (approximately 5 mg DEHP/kg body weight) or 32 ppm Pb-acetate in drinking water were administered to nulliparous adult female mice. Exposure began 2 weeks before breeding and continued throughout pregnancy and lactation, until offspring were 21 days old. At 5 months, perinatally exposed offspring blood and cortex tissue were collected, for a total of 25 male mice and 17 female mice (n = 5-7 per tissue and exposure). DNA was extracted and hydroxymethylation was measured using hydroxymethylated DNA immunoprecipitation sequencing (hMeDIP-seq). Differential peak and pathway analysis was conducted comparing across exposure groups, tissue types, and animal sex, using an FDR cutoff of 0.15. Results: DEHP-exposed females had two genomic regions with lower hydroxymethylation in blood and no differences in cortex hydroxymethylation. For DEHP-exposed males, ten regions in blood (six higher and four lower) and 246 regions (242 higher and four lower) and four pathways in cortex were identified. Pb-exposed females had no statistically significant differences in blood or cortex hydroxymethylation compared to controls. Pb-exposed males, however, had 385 regions (all higher) and six pathways altered in cortex, but no differential hydroxymethylation was identified in blood. Discussion: Overall, perinatal exposure to human-relevant levels of two common toxicants showed differences in adult DNA hydroxymethylation that was specific to sex, exposure type, and tissue, but male cortex was most susceptible to hydroxymethylation differences by exposure. Future assessments should focus on understanding if these findings indicate potential biomarkers of exposure or are related to functional long-term health effects.

5.
Clin Epigenetics ; 15(1): 49, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964604

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are chemicals that are resistant to degradation and ubiquitous in our environments. PFAS may impact the developing epigenome, but current human evidence is limited to assessments of total DNA methylation. We assessed associations between first trimester PFAS exposures with newborn DNA methylation, including 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC). DNA methylation mediation of associations between PFAS and birth outcomes were explored in the Michigan Mother Infant Pairs cohort. Nine PFAS were measured in maternal first trimester blood. Seven were highly detected and included for analysis: PFHxS, PFOA, PFOS, PFNA, PFDA, PFUnDA, and MeFOSAA. Bisulfite-converted cord blood DNA (n = 141) and oxidative-bisulfite-converted cord blood (n = 70) were assayed on Illumina MethylationEPIC BeadChips to measure total DNA methylation (5-mC + 5-hmC) and 5-mC/5-hmC. Correcting for multiple comparisons, beta regressions were used to assess associations between levels of PFAS and total methylation, 5-mC, or 5-hmC. Nonlinear mediation analyses were used to assess the epigenetic meditation effect between PFAS and birth outcomes. RESULTS: PFAS was significantly associated with total methylation (q < 0.05: PFHxS-12 sites; PFOS-19 sites; PFOA-2 sites; PFNA-3 sites; PFDA-4 sites). In 72 female infants and 69 male infants, there were sex-specific associations between five PFAS and DNA methylation. 5-mC and 5-hmC were each significantly associated with thousands of sites for PFHxS, PFOS, PFNA, PFDA, PFUnDA, and MeFOSAA (q < 0.05). Clusters of 5-mC and 5-hmC sites were significant mediators between PFNA and PFUnDA and decreased gestational age (q < 0.05). CONCLUSIONS: This study demonstrates the mediation role of specific types of DNA methylation on the relationship between PFAS exposure and birth outcomes. These results suggest that 5-mC and 5-hmC may be more sensitive to the developmental impacts of PFAS than total DNA methylation.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Gravidez , Recém-Nascido , Humanos , Masculino , Lactente , Feminino , Mães , Metilação de DNA , Michigan
6.
Curr Protoc ; 3(3): e698, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36912610

RESUMO

Although noteworthy progress has been made in developing alternatives to animal testing, nonhuman primates still play a critical role in advancing biomedical research and will likely do so for many years. Core similarities between monkeys and humans in genetics, physiology, reproduction, development, and behavior make them excellent models for translational studies relevant to human health. This unit is designed to specifically address the role of nonhuman primates in neurotoxicology research and outlines the specialized assessments that can be used to measure exposure-related changes at the structural, chemical, cellular, molecular, and functional levels. © 2023 Wiley Periodicals LLC.


Assuntos
Pesquisa Biomédica , Primatas , Animais , Humanos , Haplorrinos , Projetos de Pesquisa , Reprodução
7.
Environ Health Perspect ; 130(9): 97003, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36102641

RESUMO

BACKGROUND: The excitotoxic molecule, domoic acid (DA), is a marine algal toxin known to induce overt hippocampal neurotoxicity. Recent experimental and epidemiological studies suggest adverse neurological effects at exposure levels near the current regulatory limit (20 ppm, ∼0.075-0.1mg/kg). At these levels, cognitive effects occur in the absence of acute symptoms or evidence of neuronal death. OBJECTIVES: This study aimed to identify adverse effects on the nervous system from prolonged, dietary DA exposure in adult, female Macaca fascicularis monkeys. METHODS: Monkeys were orally exposed to 0, 0.075, and 0.15mg/kg per day for an average of 14 months. Clinical blood counts, chemistry, and cytokine levels were analyzed in the blood. In-life magnetic resonance (MR) imaging assessed volumetric and tractography differences in and between the hippocampus and thalamus. Histology of neurons and glia in the fornix, fimbria, internal capsule, thalamus, and hippocampus was evaluated. Hippocampal RNA sequencing was used to identify differentially expressed genes. Enrichment of gene networks for neuronal health, excitotoxicity, inflammation/glia, and myelin were assessed with Gene Set Enrichment Analysis. RESULTS: Clinical blood counts, chemistry, and cytokine levels were not altered with DA exposure in nonhuman primates. Transcriptome analysis of the hippocampus yielded 748 differentially expressed genes (fold change≥1.5; p≤0.05), reflecting differences in a broad molecular profile of intermediate early genes (e.g., FOS, EGR) and genes related to myelin networks in DA animals. Between exposed and control animals, MR imaging showed comparable connectivity of the hippocampus and thalamus and histology showed no evidence of hypomyelination. Histological examination of the thalamus showed a larger microglia soma size and an extension of cell processes, but suggestions of a GFAP+astrocyte response showed no indication of astrocyte hypertrophy. DISCUSSION: In the absence of overt hippocampal excitotoxicity, chronic exposure of Macaca fascicularis monkeys to environmentally relevant levels of DA suggested a subtle shift in the molecular profile of the hippocampus and the microglia phenotype in the thalamus that was possibly reflective of an adaptive response due to prolonged DA exposure. https://doi.org/10.1289/EHP10923.


Assuntos
Ácido Caínico , Síndromes Neurotóxicas , Animais , Citocinas , Feminino , Ácido Caínico/análogos & derivados , Ácido Caínico/toxicidade , Macaca fascicularis , Toxinas Marinhas/toxicidade
8.
Front Genet ; 13: 793278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432478

RESUMO

Phthalates are a diverse group of chemicals used in consumer products. Because they are so widespread, exposure to these compounds is nearly unavoidable. Recently, growing scientific consensus has suggested that phthalates produce health effects in developing infants and children. These effects may be mediated through mechanisms related to the epigenome, the constellation of mitotically heritable chemical marks and small compounds that guide transcription and translation. The present study examined the relationship between prenatal, first-trimester exposure of seven phthalates and epigenetics in two pregnancy cohorts (n = 262) to investigate sex-specific alterations in infant blood DNA methylation at birth (cord blood or neonatal blood spots). Prenatal exposure to several phthalates was suggestive of association with altered DNA methylation at 4 loci in males (all related to ΣDEHP) and 4 loci in females (1 related to ΣDiNP; 2 related to BBzP; and 1 related to MCPP) at a cutoff of q < 0.2. Additionally, a subset of dyads (n = 79) was used to interrogate the relationships between two compounds increasingly used as substitutions for common phthalates (ΣDINCH and ΣDEHTP) and cord blood DNA methylation. ΣDINCH, but not ΣDEHTP, was suggestive of association with DNA methylation (q < 0.2). Together, these results demonstrate that prenatal exposure to both classically used phthalate metabolites and their newer alternatives is associated with sex-specific infant DNA methylation. Research and regulatory actions regarding this chemical class should consider the developmental health effects of these compounds and aim to avoid regrettable substitution scenarios in the present and future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...