Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38994947

RESUMO

Vimentin has been reported to play diverse roles in cell processes such as spreading, migration, cell-matrix adhesion, and fibrotic transformation. Here, we assess how vimentin impacts cell spreading, morphology, and myofibroblast transformation of human corneal fibroblasts. Overall, although knockout (KO) of vimentin did not dramatically impact corneal fibroblast spreading and mechanical activity (traction force), cell elongation in response to PDGF was reduced in vimentin KO cells as compared to controls. Blocking vimentin polymerization using Withaferin had even more pronounced effects on cell spreading and also inhibited cell-induced matrix contraction. Furthermore, although absence of vimentin did not completely block TGFß-induced myofibroblast transformation, the degree of transformation and amount of αSMA protein expression was reduced. Proteomics showed that vimentin KO cells cultured in TGFß had a similar pattern of protein expression as controls. One exception included periostin, an ECM protein associated with wound healing and fibrosis in other cell types, which was highly expressed only in Vim KO cells. We also demonstrate for the first time that LRRC15, a protein previously associated with myofibroblast transformation of cancer-associated fibroblasts, is also expressed by corneal myofibroblasts. Interestingly, proteins associated with LRRC15 in other cell types, such as collagen, fibronectin, ß1 integrin and α11 integrin, were also upregulated. Overall, our data show that vimentin impacts both corneal fibroblast spreading and myofibroblast transformation. We also identified novel proteins that may regulate corneal myofibroblast transformation in the presence and/or absence of vimentin.


Assuntos
Córnea , Fibroblastos , Miofibroblastos , Vimentina , Humanos , Vimentina/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Córnea/citologia , Córnea/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Movimento Celular/efeitos dos fármacos , Vitanolídeos/farmacologia , Células Cultivadas
3.
Eye Contact Lens ; 48(7): 308-312, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35333808

RESUMO

ABSTRACT: The goal of this study was to evaluate the temporal and spatial pattern of wound healing following UV corneal cross-linking (CXL) using 3-dimensional (3-D) confocal imaging in vivo. Using a modified Heidelberg Retinal Tomograph with Rostock Corneal Module confocal microscope, we performed 3-D scans on two patients at multiple time points after CXL. Patient 1 showed a normal post-CXL wound healing response, with initial subbasal nerve loss and keratocyte apoptosis in the anterior stroma, followed by partial restoration of both the nerve plexus and stromal keratocytes by 6 months. In patient 2, in addition to anterior corneal damage, pyknotic nuclei were observed in the posterior stroma 7 days after CXL. Acellular areas were present in the posterior stroma at 3 months, with only partial keratocyte repopulation at 6 months. Regeneration of the subbasal nerve plexus was also delayed. Three-dimensional confocal imaging allowed these unusual wound healing responses to be identified in the absence of any corresponding clinical observations.


Assuntos
Ceratocone , Riboflavina , Colágeno , Córnea/inervação , Substância Própria , Reagentes de Ligações Cruzadas , Humanos , Microscopia Confocal , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA