Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(9): 1492-1508, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653191

RESUMO

NG2 is a structurally unique transmembrane chondroitin sulfate proteoglycan (CSPG). Its role in damaged spinal cord is dual. NG2 is considered one of key inhibitory factors restricting axonal growth following spinal injury. Additionally, we have recently detected its novel function as a blocker of axonal conduction. Some studies, however, indicate the importance of NG2 presence in the formation of synaptic contacts. We hypothesized that the optimal treatment would be neutralization of inhibitory functions of NG2 without its physical removal. Acute intraspinal injections of anti-NG2 monoclonal antibodies reportedly prevented an acute block of axonal conduction by exogenous NG2. For prolonged delivery of NG2 function neutralizing antibody, we have developed a novel gene therapy: adeno-associated vector (AAV) construct expressing recombinant single-chain variable fragment anti-NG2 antibody (AAV-NG2Ab). We examined effects of AAV-NG2Ab alone or in combination with neurotrophin NT-3 in adult female rats with thoracic T10 contusion injuries. A battery of behavioral tests was used to evaluate locomotor function. In vivo single-cell electrophysiology was used to evaluate synaptic transmission. Lower urinary tract function was assessed during the survival period using metabolic chambers. Terminal cystometry, with acquisition of external urethral sphincter activity and bladder pressure, was used to evaluate bladder function. Both the AAV-NG2Ab and AAV-NG2Ab combined with AAV-NT3 treatment groups demonstrated significant improvements in transmission, locomotion, and bladder function compared with the control (AAV-GFP) group. These functional improvements associated with improved remyelination and plasticity of 5-HT fibers. The best results were observed in the group that received combinational AAV-NG2Ab+AAV-NT3 treatment.SIGNIFICANCE STATEMENT We recently demonstrated beneficial, but transient, effects of neutralization of the NG2 proteoglycan using monoclonal antibodies delivered intrathecally via osmotic mini-pumps after spinal cord injury. Currently, we have developed a novel gene therapy tool for prolonged and clinically relevant delivery of a recombinant single-chain variable fragment anti-NG2 antibody: AAV-rh10 serotype expressing scFv-NG2 (AAV-NG2Ab). Here, we examined effects of AAV-NG2Ab combined with transgene delivery of Neurotrophin-3 (AAV-NT3) in adult rats with thoracic contusion injuries. The AAV-NG2Ab and AAV-NG2Ab+AAV-NT3 treatment groups demonstrated significant improvements of locomotor function and lower urinary tract function. Beneficial effects of this novel gene therapy on locomotion and bladder function associated with improved transmission to motoneurons and plasticity of axons in damaged spinal cord.


Assuntos
Contusões , Anticorpos de Cadeia Única , Traumatismos da Medula Espinal , Sistema Urinário , Animais , Feminino , Ratos , Contusões/terapia , Locomoção , Fatores de Crescimento Neural , Recuperação de Função Fisiológica/genética , Medula Espinal , Transmissão Sináptica , Neurotrofina 3
2.
Neurosci Lett ; 777: 136583, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35318074

RESUMO

Our recent study revealed that spinal electromagnetic stimulation (sEMS) applied at low (0.2 Hz) frequencies may improve diminished transmission in damaged spinal cord in spinal cord injured (SCI) rats. We have recently begun a pilot study investigating the effects of sEMS in non-injured and SCI humans. One unexpected result was the reduction of chronic low back pain (CLBP), reported by some patients following sEMS treatment. Chronic low back pain is one of the main causes of disability affecting the general population. Opioids are the most common drugs prescribed to US adults with CLBP. To optimize parameters for sEMS for pain treatment, in this study we used the SCI animal model and examined effects of sEMS applied at lumbosacral level on parameters and frequency-dependent depression (FDD) of Hoffmann H-reflex responses, known as common neurophysiological measures for evaluation of sensorimotor condition and plasticity in humans. We have also examined the interactive effects of sEMS and the opiate partial agonist Buprenorphine on the parameters of H-reflex in naïve and SCI rats. Consistent with previous reports, chronic SCI resulted in a marked decrease of threshold intensity required to evoke H-reflex and a lesser rate of FDD of the H-response in adult rats. Our current study revealed the optimum parameters of spinal EMS for best recovery of the properties of the H-reflex in chronic SCI animals. Here we demonstrate that electro-magnetic stimulation applied at spinal L4-L5 level with a pulsed mode (pulse at 20 Hz frequency for 5 sec with 25 sec break between pulses, total 40 trains for 20 min; PSEMS) reversed effects of SCI on key parameters of H-reflex: i.e. (1) restored the threshold intensity of electric current applied at tibial nerve to evoke the H-reflex and (2) recovered FDD properties of the H-reflex in SCI rats. Importantly, subcutaneous injections of Buprenorphine, prior to PSEMS administration, abolished the ability of PSEMS to recover both threshold intensity and FDD of the H-reflex in chronic SCI animals. These results suggest that a semi-synthetic opioid Buprenorphine and PSEMS might share common sites of action. We thus conclude that PSEMS might carry potential as a non-invasive treatment approach for chronic low back pain.


Assuntos
Buprenorfina , Traumatismos da Medula Espinal , Analgésicos Opioides/farmacologia , Animais , Buprenorfina/farmacologia , Buprenorfina/uso terapêutico , Fenômenos Eletromagnéticos , Reflexo H/fisiologia , Humanos , Projetos Piloto , Ratos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia
3.
Neurosci Lett ; 642: 37-42, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28159637

RESUMO

Electromagnetic stimulation applied at the cranial level, i.e. transcranial magnetic stimulation (TMS), is a technique for stimulation and neuromodulation used for diagnostic and therapeutic applications in clinical and research settings. Although recordings of TMS elicited motor-evoked potentials (MEP) are an essential diagnostic tool for spinal cord injured (SCI) patients, they are reliably recorded from arm, and not leg muscles. Mid-thoracic contusion is a common SCI that results in locomotor impairments predominantly in legs. In this study, we used a chronic T10 contusion SCI rat model and examined whether (i) TMS-responses in hindlimb muscles can be used for evaluation of conduction deficits in cortico-spinal circuitry and (ii) if plastic changes at spinal levels will affect these responses. In this study, plastic changes of transmission in damaged spinal cord were achieved by repetitive electro-magnetic stimulation applied over the spinal level (rSEMS). Spinal electro-magnetic stimulation was previously shown to activate spinal nerves and is gaining large acceptance as a non-invasive alternative to direct current and/or epidural electric stimulation. Results demonstrate that TMS fails to induce measurable MEPs in hindlimbs of chronically SCI animals. After facilitation of synaptic transmission in damaged spinal cord was achieved with rSEMS, however, MEPs were recorded from hindlimb muscles in response to single pulse TMS stimulation. These results provide additional evidence demonstrating beneficial effects of TMS as a diagnostic technique for descending motor pathways in uninjured CNS and after SCI. This study confirms the ability of TMS to assess plastic changes of transmission occurring at the spinal level.


Assuntos
Potencial Evocado Motor/fisiologia , Músculo Esquelético/fisiopatologia , Plasticidade Neuronal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Animais , Feminino , Membro Posterior/fisiopatologia , Ratos , Ratos Sprague-Dawley
4.
J Neurophysiol ; 114(5): 2923-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26424579

RESUMO

Our recent terminal experiments revealed that administration of a single train of repetitive spinal electromagnetic stimulation (sEMS; 35 min) enhanced synaptic plasticity in spinal circuitry following lateral hemisection spinal cord injury. In the current study, we have examined effects of repetitive sEMS applied as a single train and chronically (5 wk, every other day) following thoracic T10 contusion. Chronic studies involved examination of systematic sEMS administration alone and combined with exercise training and transgene delivery of neurotrophin [adeno-associated virus 10-neurotrophin 3 (AAV10-NT3)]. Electrophysiological intracellular/extracellular recordings, immunohistochemistry, behavioral testing, and anatomical tracing were performed to assess effects of treatments. We found that administration of a single sEMS train induced transient facilitation of transmission through preserved lateral white matter to motoneurons and hindlimb muscles in chronically contused rats with effects lasting for at least 2 h. These physiological changes associated with increased immunoreactivity of GluR1 and GluR2/3 glutamate receptors in lumbar neurons. Systematic administration of sEMS alone for 5 wk, however, was unable to induce cumulative improvements of transmission in spinomuscular circuitry or improve impaired motor function following thoracic contusion. Encouragingly, chronic administration of sEMS, followed by exercise training (running in an exercise ball and swimming), induced the following: 1) sustained strengthening of transmission to lumbar motoneurons and hindlimb muscles, 2) better retrograde transport of anatomical tracer, and 3) improved locomotor function. Greatest improvements were seen in the group that received exercise combined with sEMS and AAV-NT3.


Assuntos
Terapia por Exercício , Vetores Genéticos/uso terapêutico , Magnetoterapia/métodos , Plasticidade Neuronal , Neurotrofina 3/uso terapêutico , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Animais , Terapia Combinada , Dependovirus/fisiologia , Potencial Evocado Motor , Feminino , Membro Posterior/fisiopatologia , Imãs , Atividade Motora , Neurônios Motores/fisiologia , Músculo Esquelético/fisiopatologia , Neurônios/metabolismo , Neurotrofina 3/genética , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato/metabolismo , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/virologia , Transgenes
6.
J Neurophysiol ; 110(8): 1782-92, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23864374

RESUMO

Transmission through descending pathways to lumbar motoneurons, although important for voluntary walking in humans and rats, has not been fully understood at the cellular level in contusion models. Major descending pathways innervating lumbar motoneurons include those at corticospinal tract (CST) and ventrolateral funiculus (VLF). We examined transmission and plasticity at synaptic pathways from dorsal (d)CST and VLF to individual motoneurons located in ventral horn and interneurons located in dorsomedial gray matter at lumbar segments after thoracic chronic contusion in adult anesthetized rats. To accomplish this, we used intracellular electrophysiological recordings and performed acute focal spinal lesions during the recordings. We directly demonstrate that after thoracic T10 chronic contusion the disrupted dCST axons spontaneously form new synaptic contacts with individual motoneurons, extending around the contusion cavity, through spared ventrolateral white matter. These detour synaptic connections are very weak, and strengthening these connections in order to improve function may be a target for therapeutic interventions after spinal cord injury (SCI). We found that degradation of scar-related chondroitin sulfate proteoglycans with the enzyme chondroitinase ABC (ChABC) combined with adeno-associated viral (AAV) vector-mediated prolonged delivery of neurotrophin NT-3 (AAV-NT3) strengthened these spontaneously formed connections in contused spinal cord. Moreover, ChABC/AAV-NT3 treatment induced the appearance of additional detour synaptic pathways innervating dorsomedial interneurons. Improved transmission in ChABC/AAV-NT3-treated animals was associated with increased immunoreactivity of 5-HT-positive fibers in lumbar dorsal and ventral horns. Improved locomotor function assessed with automated CatWalk highlights the physiological significance of these novel connections.


Assuntos
Condroitina ABC Liase/metabolismo , Plasticidade Neuronal , Neurotrofina 3/metabolismo , Tratos Piramidais/fisiopatologia , Traumatismos da Medula Espinal/terapia , Animais , Condroitina ABC Liase/administração & dosagem , Condroitina ABC Liase/genética , Contusões/fisiopatologia , Contusões/terapia , Dependovirus/genética , Dependovirus/metabolismo , Feminino , Terapia Genética , Interneurônios/metabolismo , Interneurônios/fisiologia , Locomoção , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Neurotrofina 3/administração & dosagem , Neurotrofina 3/genética , Tratos Piramidais/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/fisiopatologia , Sinapses/metabolismo , Sinapses/fisiologia , Traumatismos Torácicos/fisiopatologia , Traumatismos Torácicos/terapia
7.
J Neurosci ; 33(9): 4032-43, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447612

RESUMO

NG2 belongs to the family of chondroitin sulfate proteoglycans that are upregulated after spinal cord injury (SCI) and are major inhibitory factors restricting the growth of fibers after SCI. Neutralization of NG2's inhibitory effect on axon growth by anti-NG2 monoclonal antibodies (NG2-Ab) has been reported. In addition, recent studies show that exogenous NG2 induces a block of axonal conduction. In this study, we demonstrate that acute intraspinal injections of NG2-Ab prevented an acute block of conduction by NG2. Chronic intrathecal infusion of NG2-Ab improved the following deficits induced by chronic midthoracic lateral hemisection (HX) injury: (1) synaptic transmission to lumbar motoneurons, (2) retrograde transport of fluororuby anatomical tracer from L5 to L1, and (3) locomotor function assessed by automated CatWalk gait analysis. We collected data in an attempt to understand the cellular and molecular mechanisms underlying the NG2-Ab-induced improvement of synaptic transmission in HX-injured spinal cord. These data showed the following: (1) that chronic NG2-Ab infusion improved conduction and axonal excitability in chronically HX-injured rats, (2) that antibody treatment increased the density of serotonergic axons with ventral regions of spinal segments L1-L5, (3) and that NG2-positive processes contact nodes of Ranvier within the nodal gap at the location of nodal Na(+) channels, which are known to be critical for propagation of action potentials along axons. Together, these results demonstrate that treatment with NG2-Ab partially improves both synaptic and anatomical plasticity in damaged spinal cord and promotes functional recovery after HX SCI. Neutralizing antibodies against NG2 may be an excellent way to promote axonal conduction after SCI.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos/imunologia , Atividade Motora/efeitos dos fármacos , Proteoglicanas/imunologia , Traumatismos da Medula Espinal/tratamento farmacológico , Transmissão Sináptica/efeitos dos fármacos , Análise de Variância , Animais , Anticorpos Monoclonais/farmacologia , Antígenos/farmacologia , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Moléculas de Adesão Celular Neuronais/metabolismo , Dextranos/metabolismo , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Feminino , Lateralidade Funcional , Marcha/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Patch-Clamp , Proteoglicanas/farmacologia , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/metabolismo , Ratos , Ratos Sprague-Dawley , Rodaminas/metabolismo , Serotonina/metabolismo , Canais de Sódio/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
8.
J Neurophysiol ; 107(11): 3027-39, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22402659

RESUMO

As we reported previously, propagation of action potentials through surviving axons is impaired dramatically, resulting in reduced transmission to lumbar motoneurons after midthoracic lateral hemisection (HX) in rats. The aim of the present study was to evoke action potentials through the spared fibers using noninvasive electromagnetic stimulation (EMS) over intact T2 vertebrae in an attempt to activate synaptic inputs to lumbar motoneurons and thus to enhance plasticity of spinal neural circuits after HX. We found that EMS was able to activate synaptic inputs to lumbar motoneurons and motor-evoked potentials (MEP) in hindlimb muscles in adult anesthetized rats. Amplitude of MEP was attenuated in parallel with the decline of responses recorded from the motoneuron pool after HX. Repetitive EMS (50 min, 0.2 Hz) facilitated the amplitudes of responses elicited by electric stimulation of lateral white matter or dorsal corticospinal tracts in HX rats. Facilitation sustained for at least 1.5 h after termination of EMS. The N-methyl-d-aspartate (NMDA) receptor blocker MK-801, injected intraspinally close to the recording electrode prior to EMS, did not alter these responses but blocked the EMS-induced facilitation, suggesting that activation of NMDA receptors is required to initiate an EMS-evoked increase. When MK-801 was administered after EMS-induced facilitation was established, it induced depression of these elevated responses. Results suggest that repetitive EMS over intact vertebrae could be used as a therapeutic approach to open a window of synaptic plasticity after incomplete midthoracic injuries, i.e., to activate NMDA receptors in the lumbar motoneuron pool at synaptic inputs and to strengthen transmission in damaged spinal cord.


Assuntos
Campos Eletromagnéticos , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Sinapses/fisiologia , Animais , Estimulação Elétrica/métodos , Potencial Evocado Motor/fisiologia , Feminino , Vértebras Lombares , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/terapia , Transmissão Sináptica/fisiologia , Vértebras Torácicas , Fatores de Tempo
9.
J Neurosci ; 31(49): 17788-99, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159095

RESUMO

Elevating spinal levels of neurotrophin NT-3 (NT3) while increasing expression of the NR2D subunit of the NMDA receptor using a HSV viral construct promotes formation of novel multisynaptic projections from lateral white matter (LWM) axons to motoneurons in neonates. However, this treatment is ineffective after postnatal day 10. Because chondroitinase ABC (ChABC) treatment restores plasticity in the adult CNS, we have added ChABC to this treatment and applied the combination to adult rats receiving a left lateral hemisection (Hx) at T8. All hemisected animals initially dragged the ipsilateral hindpaw and displayed abnormal gait. Rats treated with ChABC or NT3/HSV-NR2D recovered partial hindlimb locomotor function, but animals receiving combined therapy displayed the most improved body stability and interlimb coordination [Basso-Beattie-Bresnahan (BBB) locomotor scale and gait analysis]. Electrical stimulation of the left LWM at T6 did not evoke any synaptic response in ipsilateral L5 motoneurons of control hemisected animals, indicating interruption of the white matter. Only animals with the full combination treatment recovered consistent multisynaptic responses in these motoneurons indicating formation of a detour pathway around the Hx. These physiological findings were supported by the observation of increased branching of both cut and intact LWM axons into the gray matter near the injury. ChABC-treated animals displayed more sprouting than control animals and those receiving NT3/HSV-NR2D; animals receiving the combination of all three treatments showed the most sprouting. Our results indicate that therapies aimed at increasing plasticity, promoting axon growth and modulating synaptic function have synergistic effects and promote better functional recovery than if applied individually.


Assuntos
Axônios/metabolismo , Condroitina ABC Liase/metabolismo , Plasticidade Neuronal/fisiologia , Neurotrofina 3/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Análise de Variância , Animais , Axônios/patologia , Biotina/análogos & derivados , Biotina/metabolismo , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Dextranos/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Hiperalgesia/fisiopatologia , Locomoção/fisiologia , Ratos , Ratos Sprague-Dawley , Transfecção , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...