Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(31): 6566-6580, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39074307

RESUMO

The natural auxiliary function (NAF) approach is an approximation to decrease the size of the auxiliary basis set required for quantum chemical calculations utilizing the density fitting technique. It has been proven efficient to speed up various correlation models, such as second-order Møller-Plesset (MP2) theory and coupled-cluster methods. Here, for the first time, we discuss the theory of analytic derivatives for correlation methods employing the NAF approximation on the example of MP2. A detailed algorithm for the gradient calculation with the NAF approximation is proposed in the framework of the method of Lagrange multipliers. To assess the effect of the NAF approximation on gradients and optimized geometric parameters, a series of benchmark calculations on small and medium-sized systems was performed. Our results demonstrate that, for MP2, sufficiently accurate gradients and geometries can be achieved with a moderate time reduction of 15-20% for both small and medium-sized molecules.

2.
J Chem Phys ; 152(7): 074107, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087669

RESUMO

MRCC is a package of ab initio and density functional quantum chemistry programs for accurate electronic structure calculations. The suite has efficient implementations of both low- and high-level correlation methods, such as second-order Møller-Plesset (MP2), random-phase approximation (RPA), second-order algebraic-diagrammatic construction [ADC(2)], coupled-cluster (CC), configuration interaction (CI), and related techniques. It has a state-of-the-art CC singles and doubles with perturbative triples [CCSD(T)] code, and its specialties, the arbitrary-order iterative and perturbative CC methods developed by automated programming tools, enable achieving convergence with regard to the level of correlation. The package also offers a collection of multi-reference CC and CI approaches. Efficient implementations of density functional theory (DFT) and more advanced combined DFT-wave function approaches are also available. Its other special features, the highly competitive linear-scaling local correlation schemes, allow for MP2, RPA, ADC(2), CCSD(T), and higher-order CC calculations for extended systems. Local correlation calculations can be considerably accelerated by multi-level approximations and DFT-embedding techniques, and an interface to molecular dynamics software is provided for quantum mechanics/molecular mechanics calculations. All components of MRCC support shared-memory parallelism, and multi-node parallelization is also available for various methods. For academic purposes, the package is available free of charge.


Assuntos
Teoria da Densidade Funcional , Proteínas/química , Água/química , Elétrons , Simulação de Dinâmica Molecular , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA