Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 117, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443747

RESUMO

Haberlea rhodopensis, a resurrection species, is the only plant known to be able to survive multiple extreme environments, including desiccation, freezing temperatures, and long-term darkness. However, the molecular mechanisms underlying tolerance to these stresses are poorly studied. Here, we present a high-quality genome of Haberlea and found that ~ 23.55% of the 44,306 genes are orphan. Comparative genomics analysis identified 89 significantly expanded gene families, of which 25 were specific to Haberlea. Moreover, we demonstrated that Haberlea preserves its resurrection potential even in prolonged complete darkness. Transcriptome profiling of plants subjected to desiccation, darkness, and low temperatures revealed both common and specific footprints of these stresses, and their combinations. For example, PROTEIN PHOSPHATASE 2C (PP2C) genes were substantially induced in all stress combinations, while PHYTOCHROME INTERACTING FACTOR 1 (PIF1) and GROWTH RESPONSE FACTOR 4 (GRF4) were induced only in darkness. Additionally, 733 genes with unknown functions and three genes encoding transcription factors specific to Haberlea were specifically induced/repressed upon combination of stresses, rendering them attractive targets for future functional studies. The study provides a comprehensive understanding of the genomic architecture and reports details of the mechanisms of multi-stress tolerance of this resurrection species that will aid in developing strategies that allow crops to survive extreme and multiple abiotic stresses.


Assuntos
Temperatura Baixa , Genômica , Produtos Agrícolas , Ambientes Extremos , Perfilação da Expressão Gênica
2.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569292

RESUMO

Climate insecurity and extreme weather events have stimulated efforts to enhance plant resilience and productivity in adverse environmental conditions [...].


Assuntos
Plantas , Estresse Fisiológico , Espécies Reativas de Oxigênio , Clima
3.
Trends Plant Sci ; 28(9): 1060-1069, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37117077

RESUMO

The Salt Overly Sensitive (SOS) pathway plays a central role in plant salinity tolerance. Since the discovery of the SOS pathway, transcriptional and post-translational regulations of its core components have garnered considerable attention. To date, several proteins that regulate these core components, either positively or negatively at the protein and transcript levels, have been identified. Here, we review recent advances in the understanding of the functional regulation of the core proteins of the SOS pathway and an expanding spectrum of their upstream effectors in plants. Furthermore, we also discuss how these novel regulators act as key signaling nodes of multilayer control of plant development and stress adaptation through modulation of the SOS core proteins at the transcriptional and post-translational levels.


Assuntos
Proteínas de Arabidopsis , Tolerância ao Sal , Tolerância ao Sal/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas/genética
4.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886998

RESUMO

Natural biostimulants, such as seaweed extracts, can stimulate plant growth and development in both model and crop plants. Due to the increasing demands for their use in agriculture, it is crucial to ensure the sustainability of the sources from which they are produced. Furthermore, some seaweed extracts were recently shown to prime and protect from adverse environmental factors such as drought, salinity and extreme temperatures, as well as from oxidative stress. The molecular mode of action of these biostimulants has still not been fully elucidated, but there has been significant progress in this direction in the last years. Firstly, this review examines the sustainability aspects of harvesting seaweed resources as raw materials for manufacturing biostimulants and provides an overview of the regulatory landscape pertaining to seaweed-based biostimulants. The review then summarises the recent advances in determining the genetic and molecular mechanisms activated by seaweed-based biostimulants, their influence on transcriptome reconfiguration, metabolite adjustment, and ultimately stress protection, improved nutrient uptake, and plant growth and performance. This knowledge is important for deciphering the intricate stress signalling network modulated by seaweed-based biostimulants and can aid in designing molecular priming technologies for crop improvement.


Assuntos
Alga Marinha , Agricultura , Secas , Desenvolvimento Vegetal , Salinidade , Verduras
5.
Int J Mol Sci ; 23(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35456977

RESUMO

Plants have remarkable plasticity due to their vast genetic potential which interacts with many external factors and developmental signals to govern development and adaptation to changing environments [...].


Assuntos
Plantas , Biologia de Sistemas , Aclimatação , Adaptação Fisiológica , Desenvolvimento Vegetal/genética , Plantas/genética
6.
Cell Mol Life Sci ; 78(19-20): 6365-6394, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34390381

RESUMO

Plant species that exhibit vegetative desiccation tolerance can survive extreme desiccation for months and resume normal physiological activities upon re-watering. Here we survey the recent knowledge gathered from the sequenced genomes of angiosperm and non-angiosperm desiccation-tolerant plants (resurrection plants) and highlight some distinct genes and gene families that are central to the desiccation response. Furthermore, we review the vast amount of data accumulated from analyses of transcriptomes and metabolomes of resurrection species exposed to desiccation and subsequent rehydration, which allows us to build a systems biology view on the molecular and genetic mechanisms of desiccation tolerance in plants.


Assuntos
Plantas/genética , Adaptação Fisiológica/genética , Animais , Genoma de Planta/genética , Magnoliopsida/genética , Metaboloma/genética , Plantas/metabolismo , Biologia de Sistemas/métodos , Transcriptoma/genética , Água/metabolismo
7.
Heliyon ; 7(7): e07462, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34286132

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are short non-coding RNA molecules with a well-recognized role in gene expression mostly at the post-transcriptional level. Recently, dysregulation of miRNAs and miRNA-mRNA interactions has been associated with CNS diseases, including numerous psychiatric disorders. Dynamic changes in the expression profiles of circulating miRNA are nowadays regarded as promising non-invasive biomarkers that may facilitate the accurate and timely diagnosis of complex conditions. METHODS: In this study, we investigated the gene expression patterns of four miRNAs, which were previously reported to be dysregulated in pooled serum samples taken from Autism Spectrum Disorder (ASD) patients and typically developing children. The performance of a diagnostic model for ASD based on these four miRNAs was assessed by a receiver operating characteristic (ROC) curve analysis, which evaluates the diagnostic accuracy of the investigated miRNA biomarkers for ASD. Finally, to examine the potential modulation of CNS-related biological pathways, we carried out target identification and pathway analyses of the selected miRNAs. RESULTS: Significant differential expression for all the four studied miRNAs: miR-500a-5p, miR-197-5p, miR-424-5p, and miR-664a-3p, was consistently measured in the samples from ASD patients. The ROC curve analysis demonstrated high sensitivity and specificity for miR-500a-5p, miR-197-5p, and miR-424-5p. With all miRNA expression data integrated into an additive ROC curve, the combination of miR-500a-5p and miR-197-5p provided the most powerful diagnostic model. On the other hand, the mRNA target mining showed that miR-424-5p and miR-500-5p regulate pools of target mRNA molecules which are enriched in a number of biological pathways associated with the development and differentiation of the nervous system. CONCLUSIONS: The steady expression patterns of miR-500a-5p, miR-197-5p, miR-424-5p, and miR-664a-3p in ASD children suggest that these miRNAs can be considered good candidates for non-invasive molecular biomarkers in the study of ASD patients. The highest diagnostic potential is manifested by miR-500a-5p and miR-197-5p, whose combined ROC curve demonstrates very strong predictive accuracy.

8.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050128

RESUMO

Abiotic stresses cause plant growth inhibition, damage, and in the most severe cases, cell death, resulting in major crop yield losses worldwide. Many abiotic stresses lead also to oxidative stress. Recent genetic and genomics studies have revealed highly complex and integrated gene networks which are responsible for stress adaptation. Here we summarize the main findings of the papers published in the Special Issue "ROS and Abiotic Stress in Plants", providing a global picture of the link between reactive oxygen species and various abiotic stresses such as acid toxicity, drought, heat, heavy metals, osmotic stress, oxidative stress, and salinity.


Assuntos
Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Secas , Metais Pesados , Pressão Osmótica , Desenvolvimento Vegetal/genética , Plantas/genética , Salinidade
9.
Metabolites ; 11(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396419

RESUMO

Abiotic stresses, which at the molecular level leads to oxidative damage, are major determinants of crop yield loss worldwide. Therefore, considerable efforts are directed towards developing strategies for their limitation and mitigation. Here the superoxide-inducing agent paraquat (PQ) was used to induce oxidative stress in the model species Arabidopsis thaliana and the crops tomato and pepper. Pre-treatment with the biostimulant SuperFifty (SF) effectively and universally suppressed PQ-induced leaf lesions, H2O2 build up, cell destruction and photosynthesis inhibition. To further investigate the stress responses and SF-induced protection at the molecular level, we investigated the metabolites by GC-MS metabolomics. PQ induced specific metabolic changes such as accumulation of free amino acids (AA) and stress metabolites. These changes were fully prevented by the SF pre-treatment. Moreover, the metabolic changes of the specific groups were tightly correlating with their phenotypic characteristics. Overall, this study presents physiological and metabolomics data which shows that SF protects against oxidative stress in all three plant species.

10.
Food Chem Toxicol ; 112: 251-264, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29288760

RESUMO

Host-selective mycotoxins (HSTs) are various secondary metabolites or proteinaceous compounds secreted by pathogenic necrotrophic fungi that feed off on dead tissues of certain plants. Research on the HSTs has not only fundamental but also practical importance. On one hand they are implicated in the onset of devastating crop diseases. On the other hand, they have been studied as a good model for revealing the intricate mechanisms of plant-pathogen interactions. At the cellular level, HSTs target different compartments and in most instances induce programmed cell death (PCD) by a wide range of mechanisms. Often the responses provoked by HSTs resemble the effector-triggered immunity used by plant cells to combat biotrophic pathogens, which suggests that HST-producing fungi exploit the plants' own defensive systems to derive benefits. Although by definition HSTs are active only in tissues of susceptible plant genotypes, it has been demonstrated that some of them are able to influence animal cells as well. The possible effects, like cytotoxicity or cytostasis, can be harmful or beneficial and thus HSTs may either pose a health risk for humans and livestock, or be of prospective use in the fields of pharmacology, medicine and agriculture.


Assuntos
Fungos/metabolismo , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia , Fungos/genética , Especificidade de Hospedeiro , Micotoxinas/química , Plantas/metabolismo , Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo
11.
Front Plant Sci ; 6: 69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741354

RESUMO

During the course of their ontogenesis plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD). This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS) which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process.

12.
Front Plant Sci ; 4: 499, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376451

RESUMO

Haberlea rhodopensis is a resurrection species with extreme resistance to drought stress and desiccation but also with ability to withstand low temperatures and freezing stress. In order to identify biochemical strategies which contribute to Haberlea's remarkable stress tolerance, the metabolic reconfiguration of H. rhodopensis during low temperature (4°C) and subsequent return to optimal temperatures (21°C) was investigated and compared with that of the stress tolerant Thellungiella halophyla and the stress sensitive Arabidopsis thaliana. Metabolic analysis by GC-MS revealed intrinsic differences in the metabolite levels of the three species even at 21°C. H. rhodopensis had significantly more raffinose, melibiose, trehalose, rhamnose, myo-inositol, sorbitol, galactinol, erythronate, threonate, 2-oxoglutarate, citrate, and glycerol than the other two species. A. thaliana had the highest levels of putrescine and fumarate, while T. halophila had much higher levels of several amino acids, including alanine, asparagine, beta-alanine, histidine, isoleucine, phenylalanine, serine, threonine, and valine. In addition, the three species responded differently to the low temperature treatment and the subsequent recovery, especially with regard to the sugar metabolism. Chilling induced accumulation of maltose in H. rhodopensis and raffinose in A. thaliana but the raffinose levels in low temperature exposed Arabidopsis were still much lower than these in unstressed Haberlea. While all species accumulated sucrose during chilling, that accumulation was transient in H. rhodopensis and A. thaliana but sustained in T. halophila after the return to optimal temperature. Thus, Haberlea's metabolome appeared primed for chilling stress but the low temperature acclimation induced additional stress-protective mechanisms. A diverse array of sugars, organic acids, and polyols constitute Haberlea's main metabolic defence mechanisms against chilling, while accumulation of amino acids and amino acid derivatives contribute to the low temperature acclimation in Arabidopsis and Thellungiella. Collectively, these results show inherent differences in the metabolomes under the ambient temperature and the strategies to respond to low temperature in the three species.

13.
AoB Plants ; 2012: pls014, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22708052

RESUMO

BACKGROUND: Hydrogen peroxide (H(2)O(2)) was initially recognized as a toxic reactive oxygen species, able to cause damage to a variety of cellular structures. However, it became clear in the last decade that H(2)O(2) can also act as a potent signalling molecule, involved in a plethora of physiological functions. SCOPE: In the present review, we offer a brief summary of H(2)O(2) signalling events and focus on the mechanisms of its perception and signal transduction, the factors that act downstream, as well as H(2)O(2) interference with other information transfer mechanisms. CONCLUSION: The significant scientific effort in the last 10 years to determine the position of H(2)O(2) in signal transduction networks in plants demonstrated that it is essential for both the communication with external biotic and abiotic stimuli and the control of developmentally regulated processes. In addition, H(2)O(2) complements, synergizes or antagonizes many cellular regulatory circuits by active interaction with other signals and plant hormones during growth, development and stress responses. Therefore, further understanding of H(2)O(2) signal transduction is not only of fundamental, but also of practical importance, since this knowledge may contribute to improve agricultural practices and reduce stress-induced damage to crops.

14.
Gene ; 499(1): 52-60, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22402413

RESUMO

The type of reactive oxygen species (ROS) is a major factor that determines the specificity of biological responses. These responses may be elicited by activation of transcription factors that recognize ROS-specific cis-regulatory elements in target genes. In search for Arabidopsis promoter motifs specific for particular types of ROS, genome-wide microarray expression profiles for 283 abiotic stress-related conditions were subjected to cluster analysis to identify gene groups induced by singlet oxygen, superoxide radicals, and H(2)O(2). Promoters of these gene groups were analyzed to identify cis-regulatory elements that are associated with specific types of ROS. Eleven ROS-specific de novo identified elements, seven known promoter motifs and several sequences enriched in ROS-responsive clusters but lacking in specificity are reported. The conservation of the identified motifs was determined in orthologous genes in C. papaya, V. vinifera and P. trichocarpa. Finally, biological functions were attributed to the motifs by calculation of GO-term enrichment for genes with conserved ROS-responsive elements.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Sequências Reguladoras de Ácido Nucleico/fisiologia , Algoritmos , Arabidopsis/fisiologia , Sequência de Bases , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Análise em Microsséries , Modelos Biológicos , Estresse Oxidativo/genética , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico/genética , Especificidade por Substrato/genética
15.
Exp Cell Res ; 317(6): 757-69, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21281626

RESUMO

Stable expression of the tyrosine kinase receptor ErbB4 confers increased migratory behavior to the neuronal progenitor cell line ST14A, in response to neuregulin 1 (NRG1) stimulation. We used gene expression profiling analysis to identify transcriptional changes associated with higher migratory activity caused by the activation of a specific ErbB4 isoform, and found constitutive up-regulation of the epidermal growth factor receptor pathway substrate 8 (Eps8), a multimodular regulator of actin dynamics. We confirmed the increase of Eps8, both at the mRNA and at the protein level, in stable clones expressing two different ErbB4 isoforms, both characterized by high migratory activity. Using Transwell assays and experimental manipulation of Eps8 expression level, we demonstrated that Eps8 synergizes with ErbB4 to increase both basal and ligand induced cell migration, whereas siRNA mediated Eps8 silencing strongly impairs cell motility and NRG1 induced actin cytoskeleton remodeling. By transient knockdown of Eps8 through in vivo siRNA electroporation, followed by explant primary cultures, we demonstrated that Eps8 down-regulation affects migration of normal neuronal precursors. In conclusion, our data demonstrate that Eps8 is a key regulator of motility of neuronal progenitor cells expressing ErbB4, both in basal conditions and in response to external motogenic cues.


Assuntos
Receptores ErbB/metabolismo , Células-Tronco Neurais , Neuregulina-1/metabolismo , Proteínas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Western Blotting , Linhagem Celular Transformada , Movimento Celular/fisiologia , Camundongos , Análise em Microsséries , Células-Tronco Neurais/fisiologia , Isoformas de Proteínas/fisiologia , Ratos , Receptor ErbB-4 , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...