Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 297(6): 101421, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34798071

RESUMO

The discovery of oxidative cleavage of recalcitrant polysaccharides by lytic polysaccharide monooxygenases (LPMOs) has affected the study and industrial application of enzymatic biomass processing. Despite being widespread in fungi, LPMOs belonging to the auxiliary activity (AA) family AA11 have been understudied. While these LPMOs are considered chitin active, some family members have little or no activity toward chitin, and the only available crystal structure of an AA11 LPMO lacks features found in bacterial chitin-active AA10 LPMOs. Here, we report structural and functional characteristics of a single-domain AA11 LPMO from Aspergillus fumigatus, AfAA11A. The crystal structure shows a substrate-binding surface with features resembling those of known chitin-active LPMOs. Indeed, despite the absence of a carbohydrate-binding module, AfAA11A has considerable affinity for α-chitin and, more so, ß-chitin. AfAA11A is active toward both these chitin allomorphs and enhances chitin degradation by an endoacting chitinase, in particular for α-chitin. The catalytic activity of AfAA11A on chitin increases when supplying reactions with hydrogen peroxide, showing that, like LPMOs from other families, AfAA11A has peroxygenase activity. These results show that, in stark contrast to the previously characterized AfAA11B from the same organism, AfAA11A likely plays a role in fungal chitin turnover. Thus, members of the hitherto rather enigmatic family of AA11 LPMOs show considerable structural and functional differences and may have multiple roles in fungal physiology.


Assuntos
Aspergillus fumigatus/enzimologia , Quitina/genética , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Cristalografia por Raios X , Domínios Proteicos , Especificidade por Substrato
2.
Appl Environ Microbiol ; 87(24): e0165221, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613755

RESUMO

Family AA9 lytic polysaccharide monooxygenases (LPMOs) are abundant in fungi, where they catalyze oxidative depolymerization of recalcitrant plant biomass. These AA9 LPMOs cleave cellulose and some also act on hemicelluloses, primarily other (substituted) ß-(1→4)-glucans. Oxidative cleavage of xylan has been shown for only a few AA9 LPMOs, and it remains unclear whether this activity is a minor side reaction or primary function. Here, we show that Neurospora crassa LPMO9F (NcLPMO9F) and the phylogenetically related, hitherto uncharacterized NcLPMO9L from N. crassa are active on both cellulose and cellulose-associated glucuronoxylan but not on glucuronoxylan alone. A newly developed method for simultaneous quantification of xylan-derived and cellulose-derived oxidized products showed that NcLPMO9F preferentially cleaves xylan when acting on a cellulose-beechwood glucuronoxylan mixture, yielding about three times more xylan-derived than cellulose-derived oxidized products. Interestingly, under similar conditions, NcLPMO9L and the previously characterized McLPMO9H, from Malbranchea cinnamomea, showed different xylan-to-cellulose preferences, giving oxidized product ratios of about 0.5:1 and 1:1, respectively, indicative of functional variation among xylan-active LPMOs. Phylogenetic and structural analysis of xylan-active AA9 LPMOs led to the identification of characteristic structural features, including unique features that do not occur in phylogenetically remote AA9 LPMOs, such as four AA9 LPMOs whose lack of activity toward glucuronoxylan was demonstrated in the present study. Taken together, the results provide a path toward discovery of additional xylan-active LPMOs and show that the huge family of AA9 LPMOs has members that preferentially act on xylan. These findings shed new light on the biological role and industrial potential of these fascinating enzymes. IMPORTANCE Plant cell wall polysaccharides are highly resilient to depolymerization by hydrolytic enzymes, partly due to cellulose chains being tightly packed in microfibrils that are covered by hemicelluloses. Lytic polysaccharide monooxygenases (LPMOs) seem well suited to attack these resilient copolymeric structures, but the occurrence and importance of hemicellulolytic activity among LPMOs remain unclear. Here, we show that certain AA9 LPMOs preferentially cleave xylan when acting on a cellulose-glucuronoxylan mixture, and that this ability is the result of protein evolution that has resulted in a clade of AA9 LPMOs with specific structural features. Our findings strengthen the notion that the vast arsenal of AA9 LPMOs in certain fungal species provides functional versatility and that AA9 LPMOs may have evolved to promote oxidative depolymerization of a wide variety of recalcitrant, copolymeric plant polysaccharide structures. These findings have implications for understanding the biological roles and industrial potential of LPMOs.


Assuntos
Celulose/metabolismo , Oxigenases de Função Mista/metabolismo , Neurospora crassa , Xilanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/genética , Neurospora crassa/enzimologia , Neurospora crassa/genética , Oxirredução , Filogenia , Xilanos/metabolismo
3.
PLoS One ; 15(7): e0235642, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32640001

RESUMO

Aspergillus tamarii grows abundantly in naturally composting waste fibers of the textile industry and has a great potential in biomass decomposition. Amongst the key (hemi)cellulose-active enzymes in the secretomes of biomass-degrading fungi are the lytic polysaccharide monooxygenases (LPMOs). By catalyzing oxidative cleavage of glycoside bonds, LPMOs promote the activity of other lignocellulose-degrading enzymes. Here, we analyzed the catalytic potential of two of the seven AA9-type LPMOs that were detected in recently published transcriptome data for A. tamarii, namely AtAA9A and AtAA9B. Analysis of products generated from cellulose revealed that AtAA9A is a C4-oxidizing enzyme, whereas AtAA9B yielded a mixture of C1- and C4-oxidized products. AtAA9A was also active on cellopentaose and cellohexaose. Both enzymes also cleaved the ß-(1→4)-glucan backbone of tamarind xyloglucan, but with different cleavage patterns. AtAA9A cleaved the xyloglucan backbone only next to unsubstituted glucosyl units, whereas AtAA9B yielded product profiles indicating that it can cleave the xyloglucan backbone irrespective of substitutions. Building on these new results and on the expanding catalog of xyloglucan- and oligosaccharide-active AA9 LPMOs, we discuss possible structural properties that could underlie the observed functional differences. The results corroborate evidence that filamentous fungi have evolved AA9 LPMOs with distinct substrate specificities and regioselectivities, which likely have complementary functions during biomass degradation.


Assuntos
Aspergillus/metabolismo , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Oxigenases de Função Mista/metabolismo , Xilanos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Cobre/química , Cobre/metabolismo , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Glucanos/análise , Glucanos/química , Oxigenases de Função Mista/classificação , Oxigenases de Função Mista/genética , Oxirredução , Filogenia , Polissacarídeos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Xilanos/química
4.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31540984

RESUMO

The thermophilic biomass-degrader Malbranchea cinnamomea exhibits poor growth on cellulose but excellent growth on hemicelluloses as the sole carbon source. This is surprising considering that its genome encodes eight lytic polysaccharide monooxygenases (LPMOs) from auxiliary activity family 9 (AA9), enzymes known for their high potential in accelerating cellulose depolymerization. We characterized four of the eight (M. cinnamomea AA9s) McAA9s, namely, McAA9A, McAA9B, McAA9F, and McAA9H, to gain a deeper understanding about their roles in the fungus. The characterized McAA9s were active on hemicelluloses, including xylan, glucomannan, and xyloglucan, and furthermore, in accordance with transcriptomics data, differed in substrate specificity. Of the McAA9s, McAA9H is unique, as it preferentially cleaves residual xylan in phosphoric acid-swollen cellulose (PASC). Moreover, when exposed to cellulose-xylan blends, McAA9H shows a preference for xylan and for releasing (oxidized) xylooligosaccharides. The cellulose dependence of the xylan activity suggests that a flat conformation, with rigidity similar to that of cellulose microfibrils, is a prerequisite for productive interaction between xylan and the catalytic surface of the LPMO. McAA9H showed a similar trend on xyloglucan, underpinning the suggestion that LPMO activity on hemicelluloses strongly depends on the polymers' physicochemical context and conformation. Our results support the notion that LPMO multiplicity in fungal genomes relates to the large variety of copolymeric polysaccharide arrangements occurring in the plant cell wall.IMPORTANCE The Malbranchea cinnamomea LPMOs (McAA9s) showed activity on a broad range of soluble and insoluble substrates, suggesting their involvement in various steps of biomass degradation besides cellulose decomposition. Our results indicate that the fungal AA9 family is more diverse than originally thought and able to degrade almost any kind of plant cell wall polysaccharide. The discovery of an AA9 that preferentially cleaves xylan enhances our understanding of the physiological roles of LPMOs and enables the use of xylan-specific LPMOs in future applications.


Assuntos
Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Onygenales/química , Polissacarídeos/metabolismo , Xilanos/metabolismo , Especificidade por Substrato
5.
J Biol Chem ; 294(41): 15068-15081, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31431506

RESUMO

Many fungi produce multiple lytic polysaccharide monooxygenases (LPMOs) with seemingly similar functions, but the biological reason for this multiplicity remains unknown. To address this question, here we carried out comparative structural and functional characterizations of three cellulose-active C4-oxidizing family AA9 LPMOs from the fungus Neurospora crassa, NcLPMO9A (NCU02240), NcLPMO9C (NCU02916), and NcLPMO9D (NCU01050). We solved the three-dimensional structure of copper-bound NcLPMO9A at 1.6-Å resolution and found that NcLPMO9A and NcLPMO9C, containing a CBM1 carbohydrate-binding module, bind cellulose more strongly and were less susceptible to inactivation than NcLPMO9D, which lacks a CBM. All three LPMOs were active on tamarind xyloglucan and konjac glucomannan, generating similar products but clearly differing in activity levels. Importantly, in some cases, the addition of phosphoric acid-swollen cellulose (PASC) had a major effect on activity: NcLPMO9A was active on xyloglucan only in the presence of PASC, and PASC enhanced NcLPMO9D activity on glucomannan. Interestingly, the three enzymes also exhibited large differences in their interactions with enzymatic electron donors, which could reflect that they are optimized to act with different reducing partners. All three enzymes efficiently used H2O2 as a cosubstrate, yielding product profiles identical to those obtained in O2-driven reactions with PASC, xyloglucan, or glucomannan. Our results indicate that seemingly similar LPMOs act preferentially on different types of copolymeric substructures in the plant cell wall, possibly because these LPMOs are functionally adapted to distinct niches differing in the types of available reductants.


Assuntos
Biomassa , Oxigenases de Função Mista/metabolismo , Neurospora crassa/enzimologia , Plantas/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Celulose/metabolismo , Transporte de Elétrons , Peróxido de Hidrogênio/metabolismo , Oxigenases de Função Mista/química , Modelos Moleculares , Ácidos Fosfóricos/metabolismo , Conformação Proteica , Especificidade por Substrato
6.
Appl Environ Microbiol ; 85(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578267

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that perform oxidative cleavage of recalcitrant polysaccharides. We have purified and characterized a recombinant family AA9 LPMO, LPMO9B, from Gloeophyllum trabeum (GtLPMO9B) which is active on both cellulose and xyloglucan. Activity of the enzyme was tested in the presence of three different reductants: ascorbic acid, gallic acid, and 2,3-dihydroxybenzoic acid (2,3-DHBA). Under standard aerobic conditions typically used in LPMO experiments, the first two reductants could drive LPMO catalysis whereas 2,3-DHBA could not. In agreement with the recent discovery that H2O2 can drive LPMO catalysis, we show that gradual addition of H2O2 allowed LPMO activity at very low, substoichiometric (relative to products formed) reductant concentrations. Most importantly, we found that while 2,3-DHBA is not capable of driving the LPMO reaction under standard aerobic conditions, it can do so in the presence of externally added H2O2 At alkaline pH, 2,3-DHBA is able to drive the LPMO reaction without externally added H2O2, and this ability overlaps entirely the endogenous generation of H2O2 by GtLPMO9B-catalyzed oxidation of 2,3-DHBA. These findings support the notion that H2O2 is a cosubstrate of LPMOs and provide insight into how LPMO reactions depend on, and may be controlled by, the choice of pH and reductant.IMPORTANCE Lytic polysaccharide monooxygenases promote enzymatic depolymerization of lignocellulosic materials by microorganisms due to their ability to oxidatively cleave recalcitrant polysaccharides. The properties of these copper-dependent enzymes are currently of high scientific and industrial interest. We describe a previously uncharacterized fungal LPMO and show how reductants, which are needed to prime the LPMO by reducing Cu(II) to Cu(I) and to supply electrons during catalysis, affect enzyme efficiency and stability. The results support claims that H2O2 is a natural cosubstrate for LPMOs by demonstrating that when certain reductants are used, catalysis can be driven only by H2O2 and not by O2 Furthermore, we show how auto-inactivation resulting from endogenous generation of H2O2 in the LPMO-reductant system may be prevented. Finally, we identified a reductant that leads to enzyme activation without any endogenous H2O2 generation, allowing for improved control of LPMO reactivity and providing a valuable tool for future LPMO research.


Assuntos
Basidiomycota/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Basidiomycota/genética , Celulase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Concentração de Íons de Hidrogênio , Lignina/metabolismo , Oxigenases de Função Mista/genética , Oxirredução , Pichia/genética , Substâncias Redutoras , Madeira , Xilanos/metabolismo
7.
Biomol NMR Assign ; 12(2): 357-361, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30117034

RESUMO

The apo-form of the 24.4 kDa AA9 family lytic polysaccharide monooxygenase TaLPMO9A from Thermoascus aurantiacus has been isotopically labeled and recombinantly expressed in Pichia pastoris. In this paper, we report the 1H, 13C, and 15N chemical shift assignments, as well as an analysis of the secondary structure of the protein based on the secondary chemical shifts.


Assuntos
Apoenzimas/química , Apoenzimas/metabolismo , Celulose/metabolismo , Oxigenases de Função Mista/metabolismo , Ressonância Magnética Nuclear Biomolecular , Oxigenases de Função Mista/química , Thermoascus/enzimologia
8.
Protein Sci ; 27(9): 1636-1650, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29971843

RESUMO

The catalytically crucial N-terminal histidine (His1) of fungal lytic polysaccharide monooxygenases (LPMOs) is post-translationally modified to carry a methylation. The functional role of this methylation remains unknown. We have carried out an in-depth functional comparison of two variants of a family AA9 LPMO from Thermoascus aurantiacus (TaLPMO9A), one with, and one without the methylation on His1. Various activity assays showed that the two enzyme variants are identical in terms of substrate preferences, cleavage specificities and the ability to activate molecular oxygen. During the course of this work, new functional features of TaLPMO9A were discovered, in particular the ability to cleave xyloglucan, and these features were identical for both variants. Using a variety of techniques, we further found that methylation has minimal effects on the pKa of His1, the affinity for copper and the redox potential of bound copper. The two LPMOs did, however, show clear differences in their resistance against oxidative damage. Studies with added hydrogen peroxide confirmed recent claims that low concentrations of H2 O2 boost LPMO activity, whereas excess H2 O2 leads to LPMO inactivation. The methylated variant of TaLPMO9A, produced in Aspergillus oryzae, was more resistant to excess H2 O2 and showed better process performance when using conditions that promote generation of reactive-oxygen species. LPMOs need to protect themselves from reactive oxygen species generated in their active sites and this study shows that methylation of the fully conserved N-terminal histidine provides such protection.


Assuntos
Histidina/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Aspergillus oryzae/metabolismo , Biocatálise , Histidina/química , Metilação , Oxigenases de Função Mista/química , Oxirredução , Pichia/metabolismo , Polissacarídeos/química , Processamento de Proteína Pós-Traducional , Thermoascus/enzimologia
9.
Carbohydr Polym ; 193: 196-204, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29773373

RESUMO

The synthesis of vinyl-based oligocelluloses using cellodextrin phosphorylase as biocatalyst in buffer solution is presented. Various types of vinyl glucosides bearing (meth)acrylates/(meth)acrylamides functionalities served as the glucosyl acceptor in the enzyme catalyzed reverse phosphorolysis reaction and α-glucose 1-phosphate as the glucosyl donor. The enzymatic reaction was followed by thin layer chromatography and the isolated product yields were about 65%. The synthesized vinyl-based oligocelluloses had an average number of repeating glucosyl units and a number average molecular weight up to 8.9 and 1553 g mol-1, respectively. The majority of the bonds at the alpha position of acrylate units in oligocellulosyl-ethyl acrylate was fragmented as characterized by 1H NMR spectroscopy and MALDI-ToF spectrometry. Nevertheless, a minor amount of fragmentation was observed in oligocellulosyl-ethyl methacrylate and oligocellulosyl-butyl acrylate but no fragmentation was detected in the (meth)acrylamide-based oligocelluloses. Crystal lattice of the prepared vinyl-based oligocelluloses was investigated via wide-angle X-ray diffraction experiments.

10.
Biotechnol Biofuels ; 10: 177, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28702082

RESUMO

BACKGROUND: Recent advances in the development of enzyme cocktails for degradation of lignocellulosic biomass, especially the discovery of lytic polysaccharide monooxygenases (LPMOs), have opened new perspectives for process design and optimization. Softwood biomass is an abundant resource in many parts of the world, including Scandinavia, but efficient pretreatment and subsequent enzymatic hydrolysis of softwoods are challenging. Sulfite pulping-based pretreatments, such as in the BALI™ process, yield substrates that are relatively easy to degrade. We have assessed how process conditions affect the efficiency of modern cellulase preparations in processing of such substrates. RESULTS: We show that efficient degradation of sulfite-pulped softwoods with modern, LPMO-containing cellulase preparations requires the use of conditions that promote LPMO activity, notably the presence of molecular oxygen and sufficient reducing power. Under LPMO activity-promoting conditions, glucan conversion after 48-h incubation with Cellic® CTec3 reached 73.7 and 84.3% for Norway spruce and loblolly pine, respectively, at an enzyme loading of 8 mg/g of glucan. The presence of free sulfite ions had a negative effect on hydrolysis efficiency. Lignosulfonates, produced from lignin during sulfite pretreatment, showed a potential to activate LPMOs. Spiking of Celluclast®, a cellulase cocktail with low LPMO activity, with monocomponent cellulases or an LPMO showed that the addition of the LPMO was clearly more beneficial than the addition of any classical cellulase. Addition of the LPMO in reactions with spruce increased the saccharification yield from approximately 60% to the levels obtained with Cellic® CTec3. CONCLUSIONS: In this study, we have demonstrated the importance of LPMOs for efficient enzymatic degradation of sulfite-pulped softwood. We have also shown that to exploit the full potential of LPMO-rich cellulase preparations, conditions promoting LPMO activity, in particular the presence of oxygen and reducing equivalents are necessary, as is removal of residual sulfite from the pretreatment step. The use of lignosulfonates as reductants may reduce the costs related to the addition of small molecule reductants in sulfite pretreatment-based biorefineries.

11.
Appl Environ Microbiol ; 82(22): 6557-6572, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27590806

RESUMO

Fungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such as Gloeophyllum trabeum, tend to have few LPMOs, and information on these enzymes is scarce. The genome of G. trabeum encodes four auxiliary activity 9 (AA9) LPMOs (GtLPMO9s), whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants of GtLPMO9A seem to be produced, a single-domain variant, GtLPMO9A-1, and a longer variant, GtLPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function. We have overexpressed the phylogenetically distinct GtLPMO9A-2 in Pichia pastoris and investigated its properties. Standard analyses using high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) showed that GtLPMO9A-2 is active on cellulose, carboxymethyl cellulose, and xyloglucan. Importantly, compared to other known xyloglucan-active LPMOs, GtLPMO9A-2 has broad specificity, cleaving at any position along the ß-glucan backbone of xyloglucan, regardless of substitutions. Using dynamic viscosity measurements to compare the hemicellulolytic action of GtLPMO9A-2 to that of a well-characterized hemicellulolytic LPMO, NcLPMO9C from Neurospora crassa revealed that GtLPMO9A-2 is more efficient in depolymerizing xyloglucan. These measurements also revealed minor activity on glucomannan that could not be detected by the analysis of soluble products by HPAEC-PAD and MS and that was lower than the activity of NcLPMO9C. Experiments with copolymeric substrates showed an inhibitory effect of hemicellulose coating on cellulolytic LPMO activity and did not reveal additional activities of GtLPMO9A-2. These results provide insight into the LPMO potential of G. trabeum and provide a novel sensitive method, a measurement of dynamic viscosity, for monitoring LPMO activity. IMPORTANCE: Currently, there are only a few methods available to analyze end products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here, we present an alternative and sensitive method based on measurement of dynamic viscosity for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses, such as xyloglucan. We have used both these novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown-rot fungus. This enzyme, GtLPMO9A-2, differs from previously characterized LPMOs in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone. GtLPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibers together. The xyloglucan-degrading potential of GtLPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown rot through degradation of the primary cell wall.


Assuntos
Basidiomycota/enzimologia , Basidiomycota/metabolismo , Glucanos/metabolismo , Oxigenases de Função Mista/isolamento & purificação , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Xilanos/metabolismo , Basidiomycota/genética , Parede Celular/metabolismo , Celulase/metabolismo , Celulose/metabolismo , Cromatografia por Troca Iônica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Espectrometria de Massas , Neurospora crassa/enzimologia , Neurospora crassa/metabolismo , Pichia/genética , Viscosidade , Madeira/metabolismo , Madeira/microbiologia
12.
FEBS Lett ; 590(19): 3346-3356, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27587308

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are important for the enzymatic conversion of biomass and seem to play a key role in degradation of the plant cell wall. In this study, we characterize an LPMO from the fungal plant pathogen Fusarium graminearum (FgLPMO9A) that catalyzes the mixed C1/C4 oxidative cleavage of cellulose and xyloglucan, but is inactive toward other (1,4)-linked ß-glucans. Our findings indicate that FgLPMO9A has unprecedented broad specificity on xyloglucan, cleaving any glycosidic bond in the ß-glucan main chain, regardless of xylosyl substitutions. Interestingly, we found that when incubated with a mixture of xyloglucan and cellulose, FgLPMO9A efficiently attacks the xyloglucan, whereas cellulose conversion is inhibited. This suggests that removal of hemicellulose may be the true function of this LPMO during biomass conversion.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Glucanos/metabolismo , Oxigenases de Função Mista/metabolismo , Xilanos/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Especificidade por Substrato
13.
Anal Chem ; 87(19): 9639-46, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26291473

RESUMO

Much progress was made in the straightforward and eco-friendly enzymatic synthesis of shorter cellulose chains (oligocellulose). Here, we report the determination of a molar mass distribution of the oligocellulose synthesized from cellobiose (CB) and α-glucose 1-phosphate by reverse phosphorolysis, using enzymes cellodextrin phosphorylase from Clostridium stercorarium or Clostridium thermocellum as catalyst. The oligocellulose molar mass distribution was analyzed using three different methods: (1)H NMR spectroscopy, matrix assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-ToF MS) and size exclusion chromatography (SEC). The molar mass distribution of the synthesized oligocellulose was only dependent on the concentration of cellobiose used in the reaction. Data obtained from MALDI-ToF MS and SEC were almost identical and showed that oligocellulose synthesized using 10 mM CB has an average degree of polymerization (DPn) of ∼7, while a DPn of ∼14 was achieved when 0.2 mM CB was used in the reaction. Because of solvent limitation in SEC analysis, MALDI-ToF MS was shown to be the technique of choice for accurate, easy and fast oligocellulose molar mass distribution determination.

14.
Biomacromolecules ; 15(7): 2482-93, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24835301

RESUMO

2,5-Bis(hydroxymethyl)furan is a highly valuable biobased rigid diol resembling aromatic monomers in polyester synthesis. In this work, it was enzymatically polymerized with various diacid ethyl esters by Candida antarctica Lipase B (CALB) via a three-stage method. A series of novel biobased furan polyesters with number-average molecular weights (M(n)) around 2000 g/mol were successfully obtained. The chemical structures and physical properties of 2,5-bis(hydroxymethyl)furan-based polyesters were fully characterized. Furthermore, we discussed the effects of the number of the methylene units in the dicarboxylic segments on the physical properties of the furan polyesters.


Assuntos
Proteínas Fúngicas/química , Furanos/química , Lipase/química , Poliésteres/síntese química , Espectroscopia de Ressonância Magnética , Peso Molecular , Polimerização , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
J Phys Chem B ; 117(37): 10792-7, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24020960

RESUMO

5-Hydroxy-L-tryptophan (5HW) has been biosynthetically incorporated in many proteins to facilitate their characterization using fluorescence spectroscopy. An attractive feature of this tryptophan analogue is its absorbance at 310-320 nm, allowing its specific excitation in a Trp background. The red-shift in absorbance upon introduction of a hydroxyl group at the 5-position of Trp or indole was found to be due to a lowering of the (1)Lb transition energy. It was therefore believed that 5HW only features (1)Lb emission. Recently, calculations for 5-hydroxyindole (5HI) in water revealed (1)La is the emitting state, and the same was predicted for 5HW incorporated in proteins. To clarify which state emits in 5HI and 5HW, we present here excitation anisotropy spectra of these probes and of four proteins labeled with 5HW at a surface exposed position. Our data clearly show (1)Lb is the emitting state of 5HI, 5HW, and 5HW in three of the proteins investigated. For one protein mixed emission was observed, and the decay kinetics were found strongly dependent on the emission wavelength. This work provides the first experimental evidence that (1)La can be the emitting state for this Trp analogue incorporated in a protein.


Assuntos
5-Hidroxitriptofano/química , Indóis/química , Proteínas/química , Polarização de Fluorescência , Mutação , Espectrometria de Fluorescência , Triptofano/química , Triptofano/genética
16.
Amino Acids ; 44(5): 1329-36, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23404517

RESUMO

Biosynthetic incorporation of tryptophan (Trp) analogues in recombinant proteins using an E. coli Trp auxotroph expression host is limited to analogues modified with a small substituent like a fluoro atom or a hydroxyl or amine group. We report here the efficient incorporation (>89 %) of chloro- and bromo atoms containing Trp analogues in alloproteins at high expression levels using a Lactococcus lactis Trp auxotroph strain. This result was only obtained after coexpression of the enzyme tryptophanyl-tRNA synthetase (TrpRS) of L. lactis, an enzyme believed to show a more relaxed substrate specificity than TrpRS from E. coli. Chloro- and bromo-Trps are attractive intrinsic phosphorescence probes as these Trp analogues are much less sensitive for quenchers in the medium, like oxygen, than Trp. Coexpression of TrpRS was also essential for the biosynthetic incorporation (94 %) of the Trp analogue 5,6 difluoroTrp. This makes our expression system ideally suited to generate a set of methyl- and fluoro-substituted Trp analogue-containing alloproteins in high yield for investigating the involvement of the Trp residue in cation-pi or pi-pi interactions. Taken together, the presented Trp auxotroph expression system features the most relaxed specificity for Trp analogue structures reported to date and gives a high alloprotein yield.


Assuntos
Proteínas de Bactérias/biossíntese , Lactococcus lactis/enzimologia , Triptofano-tRNA Ligase/biossíntese , Triptofano/análogos & derivados , Triptofano/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Lactococcus lactis/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Fluorescência , Coloração e Rotulagem , Especificidade por Substrato
17.
Anal Biochem ; 428(2): 111-8, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22713342

RESUMO

The lysin motif (LysM) is a peptidoglycan binding protein domain found in a wide range of prokaryotes and eukaryotes. Various techniques have been used to study the LysM-ligand interaction, but a sensitive spectroscopic method to directly monitor this interaction has not been reported. Here a tryptophan analog fluorescence spectroscopy approach is presented to monitor the LysM-ligand interaction using the LysM of the N-acetylglucosaminidase enzyme of Lactococcus lactis. A three-dimensional model of this LysM protein was built based on available structural information of a homolog. This model allowed choosing the amino acid positions to be labeled with a Trp analog. Four functional single-Trp LysM mutants and one double-Trp LysM mutant were constructed and biosynthetically labeled with 7-azatryptophan or 5-hydroxytryptophan. These Trp analogs feature red-shifted absorption spectra, enabling the monitoring of the LysM-ligand interaction in media with a Trp background. The emission intensities of four of the five LysM constructs were found to change markedly on exposure to either L. lactis bacterium-like particles or peptidoglycan as ligands. The method reported here is suitable to monitor LysM-ligand interactions at (sub)micromolar LysM concentrations and can be used for the detection of low levels of peptidoglycan or microbes in solutions.


Assuntos
Lactococcus lactis/enzimologia , Muramidase/química , Espectrometria de Fluorescência/métodos , Triptofano/análogos & derivados , Motivos de Aminoácidos , Sequência de Aminoácidos , Carboidratos/química , Biologia Computacional , Ensaio de Imunoadsorção Enzimática , Ligantes , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Muramidase/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade por Substrato , Titulometria , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...