Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Immunol ; 13: 1020844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713457

RESUMO

Background: The new types of mRNA-containing lipid nanoparticle vaccines BNT162b2 and mRNA-1273 and the adenovirus-based vaccine AZD1222 were developed against SARS-CoV-2 and code for its spike (S) protein. Several studies have investigated short-term antibody (Ab) responses after vaccination. Objective: However, the impact of these new vaccine formats with unclear effects on the long-term Ab response - including isotype, subclass, and their type of Fc glycosylation - is less explored. Methods: Here, we analyzed anti-S Ab responses in blood serum and the saliva of SARS-CoV-2 naïve and non-hospitalized pre-infected subjects upon two vaccinations with different mRNA- and adenovirus-based vaccine combinations up to day 270. Results: We show that the initially high mRNA vaccine-induced blood and salivary anti-S IgG levels, particularly IgG1, markedly decrease over time and approach the lower levels induced with the adenovirus-based vaccine. All three vaccines induced, contrary to the short-term anti-S IgG1 response with high sialylation and galactosylation levels, a long-term anti-S IgG1 response that was characterized by low sialylation and galactosylation with the latter being even below the corresponding total IgG1 galactosylation level. Instead, the mRNA, but not the adenovirus-based vaccines induced long-term IgG4 responses - the IgG subclass with inhibitory effector functions. Furthermore, salivary anti-S IgA levels were lower and decreased faster in naïve as compared to pre-infected vaccinees. Predictively, age correlated with lower long-term anti-S IgG titers for the mRNA vaccines. Furthermore, higher total IgG1 galactosylation, sialylation, and bisection levels correlated with higher long-term anti-S IgG1 sialylation, galactosylation, and bisection levels, respectively, for all vaccine combinations. Conclusion: In summary, the study suggests a comparable "adjuvant" potential of the newly developed vaccines on the anti-S IgG Fc glycosylation, as reflected in relatively low long-term anti-S IgG1 galactosylation levels generated by the long-lived plasma cell pool, whose induction might be driven by a recently described TH1-driven B cell response for all three vaccines. Instead, repeated immunization of naïve individuals with the mRNA vaccines increased the proportion of the IgG4 subclass over time which might influence the long-term Ab effector functions. Taken together, these data shed light on these novel vaccine formats and might have potential implications for their long-term efficacy.


Assuntos
COVID-19 , Imunoglobulina G , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , Vacina BNT162 , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , Vacinas de mRNA , Adenoviridae/genética
3.
J Invest Dermatol ; 141(2): 285-294, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32653301

RESUMO

The major histocompatibility complex haplotype represents the most prevalent genetic risk factor for the development of autoimmune diseases. However, the mechanisms by which major histocompatibility complex-associated genetic susceptibility translates into autoimmune disease are not fully understood. Epidermolysis bullosa acquisita is an autoimmune skin-blistering disease driven by autoantibodies to type VII collagen. Here, we investigated autoantigen-specific plasma cells, CD4+ T cells, and IgG fraction crystallizable glycosylation in murine epidermolysis bullosa acquisita in congenic mouse strains with the disease-permitting H2s or disease-nonpermitting H2b major histocompatibility complex II haplotypes. Mice with an H2s haplotype showed increased numbers of autoreactive CD4+ T cells and elevated IL-21 and IFN-γ production, associated with a higher frequency of IgG autoantibodies with an agalactosylated, proinflammatory N-glycan moiety. Mechanistically, we show that the altered antibody glycosylation leads to increased ROS release from neutrophils, the main drivers of autoimmune inflammation in this model. These results indicate that major histocompatibility complex II-associated susceptibility to autoimmune diseases acuminates in a proinflammatory IgG fraction crystallizable N-glycosylation pattern and provide a mechanistic link to increased ROS release by neutrophils.


Assuntos
Doenças Autoimunes/etiologia , Haplótipos , Antígenos de Histocompatibilidade Classe II/genética , Imunoglobulina G/fisiologia , Dermatopatias/etiologia , Animais , Autoanticorpos/sangue , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Citocinas/análise , Glicosilação , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dermatopatias/genética , Dermatopatias/imunologia , Linfócitos T Reguladores/imunologia
5.
J Allergy Clin Immunol ; 146(3): 652-666.e11, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32445838

RESUMO

BACKGROUND: Effector functions of IgG Abs are regulated by their Fc N-glycosylation pattern. IgG Fc glycans that lack galactose and terminal sialic acid residues correlate with the severity of inflammatory (auto)immune disorders and have also been linked to protection against viral infection and discussed in the context of vaccine-induced protection. In contrast, sialylated IgG Abs have shown immunosuppressive effects. OBJECTIVE: We sought to investigate IgG glycosylation programming during the germinal center (GC) reaction following immunization of mice with a foreign protein antigen and different adjuvants. METHODS: Mice were analyzed for GC T-cell, B-cell, and plasma cell responses, as well as for antigen-specific serum IgG subclass titers and Fc glycosylation patterns. RESULTS: Different adjuvants induce distinct IgG+ GC B-cell responses with specific transcriptomes and expression levels of the α2,6-sialyltransferase responsible for IgG sialylation that correspond to distinct serum IgG Fc glycosylation patterns. Low IgG Fc sialylation programming in GC B cells was overall highly dependent on the Foxp3- follicular helper T (TFH) cell-inducing cytokine IL-6, here in particular induced by water-in-oil adjuvants and Mycobacterium tuberculosis. Furthermore, low IgG Fc sialylation programming was dependent on adjuvants that induced IL-27 receptor-dependent IFN-γ+ TFH1 cells, IL-6/IL-23-dependent IL-17A+ TFH17 cells, and high ratios of TFH cells to Foxp3+ follicular regulatory T cells. Here, the 2 latter were dependent on M tuberculosis and its cord factor. CONCLUSION: This study's findings regarding adjuvant-dependent GC responses and IgG glycosylation programming may aid in the development of novel vaccination strategies to induce IgG Abs with both high affinity and defined Fc glycosylation patterns in the GC.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos/administração & dosagem , Centro Germinativo/imunologia , Imunoglobulina G/imunologia , Compostos de Alúmen/administração & dosagem , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Citocinas/imunologia , Feminino , Adjuvante de Freund/administração & dosagem , Glicosilação , Lipopolissacarídeos/administração & dosagem , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óleo Mineral/administração & dosagem , Mycobacterium tuberculosis/imunologia , Ovalbumina/administração & dosagem , Polissorbatos/administração & dosagem , Esqualeno/administração & dosagem , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Vacinação
6.
Front Immunol ; 9: 958, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867943

RESUMO

IgG antibodies (Abs) mediate their effector functions through the interaction with Fcγ receptors (FcγRs) and the complement factors. The main IgG-mediated complement activation pathway is induced through the binding of complement C1q to IgG Abs. This interaction is dependent on antigen-dependent hexamer formation of human IgG1 and IgG3 to increase the affinity for the six-headed C1q molecule. By contrast, human IgG4 fails to bind to C1q. Instead, it has been suggested that human IgG4 can block IgG1 and IgG3 hexamerization required for their binding to C1q and activating the complement. Here, we show that murine IgG1, which functionally resembles human IgG4 by not interacting with C1q, inhibits the binding of IgG2a, IgG2b, and IgG3 to C1q in vitro, and suppresses IgG2a-mediated complement activation in a hemolytic assay in an antigen-dependent and IgG subclass-specific manner. From this perspective, we discuss the potential of murine IgG1 and human IgG4 to block the complement activation as well as suppressive effects of sialylated IgG subclass Abs on FcγR-mediated immune cell activation. Accumulating evidence suggests that both mechanisms seem to be responsible for preventing uncontrolled IgG (auto)Ab-induced inflammation in mice and humans. Distinct IgG subclass distributions and functionally opposite IgG Fc glycosylation patterns might explain different outcomes of IgG-mediated immune responses and provide new therapeutic options through the induction, enrichment, or application of antigen-specific sialylated human IgG4 to prevent complement and FcγR activation as well.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Complemento C1q/antagonistas & inibidores , Via Clássica do Complemento , Imunoglobulina G/farmacologia , Receptores de IgG/antagonistas & inibidores , Animais , Sítios de Ligação de Anticorpos , Complemento C1q/metabolismo , Glicosilação , Hemólise , Humanos , Camundongos
7.
Front Immunol ; 9: 1183, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29928274

RESUMO

Pro- and anti-inflammatory effector functions of IgG antibodies (Abs) depend on their subclass and Fc glycosylation pattern. Accumulation of non-galactosylated (agalactosylated; G0) IgG Abs in the serum of rheumatoid arthritis and systemic lupus erythematosus (SLE) patients reflects severity of the diseases. In contrast, sialylated IgG Abs are responsible for anti-inflammatory effects of the intravenous immunoglobulin (pooled human serum IgG from healthy donors), administered in high doses (2 g/kg) to treat autoimmune patients. However, whether low amounts of sialylated autoantigen-reactive IgG Abs can also inhibit autoimmune diseases is hardly investigated. Here, we explore whether sialylated autoantigen-reactive IgG Abs can inhibit autoimmune pathology in different mouse models. We found that sialylated IgG auto-Abs fail to induce inflammation and lupus nephritis in a B cell receptor (BCR) transgenic lupus model, but instead are associated with lower frequencies of pathogenic Th1, Th17 and B cell responses. In accordance, the transfer of small amounts of immune complexes containing sialylated IgG Abs was sufficient to attenuate the development of nephritis. We further showed that administration of sialylated collagen type II (Col II)-specific IgG Abs attenuated the disease symptoms in a model of Col II-induced arthritis and reduced pathogenic Th17 cell and autoantigen-specific IgG Ab responses. We conclude that sialylated autoantigen-specific IgG Abs may represent a promising tool for treating pathogenic T and B cell immune responses in autoimmune diseases.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Autoanticorpos/metabolismo , Linfócitos B/imunologia , Nefrite Lúpica/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Autoanticorpos/química , Colágeno Tipo II/imunologia , Modelos Animais de Doenças , Glicosilação , Humanos , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ácido N-Acetilneuramínico/química , Receptores de Antígenos de Linfócitos B/genética , Receptores de IgG/genética , Receptores de IgG/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...