Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(2): 837-849, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29230451

RESUMO

The photophysical properties of two pyrene-bodipy molecular dyads, composed of a phenyl-pyrene (Py-Ph) linked to the meso position of a bodipy (BD) molecule with either H-atoms (BD1) or ethyl groups (BD2) at the 2,6 positions, are investigated by stationary, nanosecond and femtosecond spectroscopy. The properties of these dyads (Py-Ph-BD1 and Py-Ph-BD2) are compared to those of their constituent chromophores in two solvents namely 1,2-dichloroethane (DCE) and acetonitrile (ACN). Stationary spectroscopy reveals a weak coupling among the subunits in both dyads. Excitation of the pyrene (Py) subunit leads to emission that is totally governed by the BD subunits in both dyads pointing to excitation energy transfer (EET) from the Py to BD chromophore. Femtosecond fluorescence and transient absorption spectroscopy reveal that EET takes place within 0.3-0.5 ps and is mostly independent of the solvent and the type of the BD subunit. The EET lifetime is in reasonable agreement with that predicted by Förster theory. After EET has taken place, Py-Ph-BD1 in DCE and Py-Ph-BD2 in both solvents decay mainly radiatively to the ground state with 3.5-5.0 ns lifetimes which are similar to those of the individual BD chromophores. However, the excited state of Py-Ph-BD1 in ACN is quenched having a lifetime of 1 ns. This points to the opening of an additional non-radiative channel of the excited state of Py-Ph-BD1 in this solvent, most probably charge separation (CS). Target analysis of the TA spectra has shown that the CS follows inverted kinetics and is substantially slower than the recombination of the charge-separated state. Occurrence of CS with Py-Ph-BD1 in ACN is also supported by energetic considerations. The above results indicate that only a small change in the structure of the BD units incorporated in the dyads significantly affects the excited state dynamics leading either to a dyad with long lifetime and high fluorescence quantum yield or to a dyad with ability to undergo CS.

2.
Nanoscale ; 7(38): 15840-51, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26358392

RESUMO

Advances in organic synthetic chemistry combined with the exceptional electronic properties of carbon allotropes, particularly graphene, is the basis used to design and fabricate novel electron donor-acceptor ensembles with desired properties for technological applications. Thiophene-based materials, which are mainly thiophene-containing polymers, are known for their notable electronic properties. In this frame moving from polymer to oligomer forms, new fundamental information would help for a better understanding of their electrochemical and photophysical properties. Furthermore, a successful combination of their electronic properties with those of graphene is a challenging goal. In this study, two oligothiophene compounds, which consist of three and nine thiophene-rings and are abbreviated 3T and 9T, respectively, were synthesized and noncovalently associated with liquid phase exfoliated few-layered graphene sheets (abbreviated eG), thus forming donor-acceptor 3T/eG and 9T/eG nanoensembes. Markedly, intra-ensemble electronic interactions between the two components in the ground and excited states were evaluated with the aid of UV-Vis and photoluminescence spectroscopy. Furthermore, redox assays revealed the one-electron oxidation of 3T accompanied by one-electron reduction due to eG in 3T/eG, whereas there were two reversible one-electron oxidations of 9T accompanied by one-electron reduction of eG9T/eG. The electrochemical band gap for the 3T/eG and 9T/eG ensembles were calculated and verified, in which the negative free-energy change for the charge-separated state of 3T/eG and 9T/eGvia the singlet excited state of 3T and 9T, respectively, were thermodynamically favorable. Finally, the results of transient pump-probe spectroscopy studies at the femtosecond time scale were supportive of charge transfer type interactions in the 3T/eG and 9T/eG ensembles. The estimated rates for intra-ensemble charge separation were found to be 9.52 × 10(9) s(-1) and 2.2 × 10(11) s(-1), respectively, for 3T/eG and 9T/eG in THF, which reveal moderate to ultrafast photoinduced events in the oligothiophene/graphene supramolecular ensembles.

3.
J Phys Chem A ; 114(17): 5580-7, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20384332

RESUMO

A theoretical investigation on the electronic structure of 4-dimethylamino-4'-nitrostilbene (DANS), 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino) styryl-4H-pyran (DCM), and their protonated forms is presented in an effort to rationalize recent experimental results on the tuning of the emitted color of organic light-emitting diodes through photochemically induced protonation. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been carried out on the neutral and protonated forms of DANS and DCM, employing both the B3LYP and the CAM-B3LYP functionals. It was found that the CAM-B3LYP functional leads to better agreement than the B3LYP of the calculated with the experimental absorption lambda(max) for DANS, whereas B3LYP is more appropriate than CAM-B3LYP for DCM. The results of the calculations aid in a rationalization of the observed differences of the spectra of DANS and DCM upon protonation, and in particular those differences that make DANS a more attractive system for absorbance and emission tuning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...