Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; : 148669, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866259

RESUMO

Bacillus species are extensively documented as plant growth-promoting rhizobacteria, contributing significantly to the enhancement of soil fertility, nutrient recycling, and the control of phytopathogens. Utilizing them as biocontrol agents represents an environmentally friendly strategy, particularly within the rhizospheric community. This study presents the comprehensive genome sequences of three B. velezensis strains (LGMB12, LGMB319, and LGMB426) which were previously isolated from root samples of maize (Zea mays L.), along with a type strain FZB42. The research assesses the capability of the three strains for antagonizing fungi, specifically Fusarium graminearum, Fusarium verticillioides, Colletotrichum graminicola, and Stenocarpella sp. In paired cultures involving maize fungi, treatments containing bacteria B. velezensis exhibited statistically significant differences compared to both negative and positive treatments in terms of antagonism. Furthermore, genome mining techniques were employed to explore their inherent antagonistic potential. The assembly revealed that strains LGMB12, LGMB319, LGMB426, and FZB42 exhibit genome sizes of 4,187,541 bp, 4,244,954 bp, 3,976,537 bp, and 3,990,518 respectively. Their respective G + C content stands at 46.42 %, 46.50 %, 46.51 %, and 46.38 %. Moreover, the genomes present multiple gene clusters responsible for the synthesis of secondary metabolites and carbohydrate-active enzymes (CAZymes). These clusters highlight a diverse array of antibacterial and antifungal properties, complemented by numerous plant growth-promoting genes. These results highlight the potential of B. velezensis LGMB12, LGMB319, and LGMB426 strains as biocontrol and plant growth promotion agents, being promising candidates for further studies in agricultural production, including field trials.

2.
Microorganisms ; 10(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36557594

RESUMO

Strawberry (Fragaria x ananassa, Duch.) is an important crop worldwide. However, since it is a highly demanding crop in terms of the chemical conditions of the substrate, a large part of strawberry production implies the application of large amounts of fertilizers in the production fields. This practice can cause environmental problems, in addition to increases in the fruit's production costs. In this context, applying plant growth-promoting bacteria in production fields can be an essential strategy, especially thanks to their ability to stimulate plant growth via different mechanisms. Therefore, this study aimed to test in vitro and in vivo the potential of bacteria isolated from strawberry leaves and roots to directly promote plant growth. The isolates were tested in vitro for their ability to produce auxins, solubilize phosphate and fix nitrogen. Isolates selected in vitro were tested on strawberry plants to promote plant growth and increase the accumulation of nitrogen and phosphorus in the leaves. The tested isolates showed an effect on plant growth according to biometric parameters. Among the tested isolates, more expressive results for the studied variables were observed with the inoculation of the isolate MET12M2, belonging to the species Brevibacillus fluminis. In general, bacterial inoculation induced strain-dependent effects on strawberry growth. In vitro and in vivo assays showed the potential use of the B. fluminis MET12M2 isolate as a growth promoter for strawberries.

3.
Genetica ; 149(5-6): 335-342, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34383169

RESUMO

Transposable elements (TEs) are important components of eukaryotic genomes and compose around 30% of the genome of Rhinella marina, an invasive toad species. Considering the possible role of TEs in the adaptation of populations, we have analyzed the expression of TEs in publicly available spleen tissue transcriptomic data generated for this species after immune and stress challenge. By analyzing the transcriptome assembly, we detected a high number of TE segments. Moreover, some distinct TE families were differentially expressed in some conditions. Our result shows that several TEs are capable of being transcribed in R. marina and they could help to generate a rapid response of specimens to the environment. Also, we can suggest that these TEs could be activated in the germinative cells as well producing variability to be selected and shaped by the evolutionary processes behind the success of this invasive species. Thus, the TEs are important targets for investigation in the context of R. marina adaptation.


Assuntos
Bufo marinus/genética , Bufo marinus/imunologia , Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/imunologia , Estresse Fisiológico/genética , Estresse Fisiológico/imunologia , Animais , Feminino , Masculino
4.
Fungal Genet Biol ; 144: 103444, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32822858

RESUMO

Currently, eight Phyllosticta species are known to be associated with several Citrus hosts, incorporating diverse lifestyles: while some of them are endophytic (P. capitalensis and P. citribraziliensis), others are pathogenic (P. citriasiana, P. citricarpa, P. citrichinaensis and P. paracitricarpa). Sexual reproduction plays a key role in the interaction between these Phyllosticta species and their Citrus hosts, especially for the spread and persistence of the pathogenic species in the environment. Given this, differences in sexual reproduction strategies could be related to the differences in lifestyles. To evaluate this hypothesis, we characterized the mating-type loci of six Citrus-associated Phyllosticta species from whole genome assemblies. Mating-type genes in the Citrus-associated Phyllosticta species are highly variable in their sequence content, but the genomic locations and organization of the mating-type loci are conserved. Phyllosticta citriasiana, P. citribraziliensis, P. citricarpa and P. paracitricarpa are heterothallic, while P. capitalensis and P. citrichinaensis are homothallic. In addition, the P. citrichinaensis MAT1-2 idiomorph occurs in a separate location from the mating-type locus. Ancestral state reconstruction suggests that homothallism is the ancestral thallism state in Phyllosticta, with a shift to heterothallism in Phyllosticta species that are pathogenic to Citrus. Moreover, the homothallic strategies of P. capitalensis and P. citrichinaensis result from independent evolutionary events, as P. capitalensis locus likely represents the ancestral state, and P. citrichinaensis homothallism has risen through a reversion in a heterothallic ancestor and underwent remodelling events. As the pathogenic species P. citriasiana, P. citricarpa and P. paracitricarpa are heterothallic and incapable of selfing, disease management practices focused in preventing the occurrence of sexual reproduction could assist in the control of Citrus Black Spot and Citrus Tan Spot diseases. This study emphasizes the importance of studying Citrus-Phyllosticta interactions under evolutionary and genomic perspectives, as these approaches can provide valuable information about the association between Phyllosticta species and their hosts, and also serve as guidance for the improvement of disease management practices.


Assuntos
Citrus/microbiologia , Genes Fúngicos Tipo Acasalamento/genética , Doenças das Plantas/genética , Reprodução/genética , Ascomicetos/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , Citrus/genética , Citrus/crescimento & desenvolvimento , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...