Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 21, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225662

RESUMO

BACKGROUND: Current evidence suggests that cis-regulatory elements controlling gene expression may be the predominant target of natural selection in humans and other species. Detecting selection acting on these elements is critical to understanding evolution but remains challenging because we do not know which mutations will affect gene regulation. RESULTS: To address this, we devise an approach to search for lineage-specific selection on three critical steps in transcriptional regulation: chromatin activity, transcription factor binding, and chromosomal looping. Applying this approach to lymphoblastoid cells from 831 individuals of either European or African descent, we find strong signals of differential chromatin activity linked to gene expression differences between ancestries in numerous contexts, but no evidence of functional differences in chromosomal looping. Moreover, we show that enhancers rather than promoters display the strongest signs of selection associated with sites of differential transcription factor binding. CONCLUSIONS: Overall, our study indicates that some cis-regulatory adaptation may be more easily detected at the level of chromatin than DNA sequence. This work provides a vast resource of genomic interaction data from diverse human populations and establishes a novel selection test that will benefit future study of regulatory evolution in humans and other species.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Humanos , Cromatina/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
NPJ Regen Med ; 5: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218991

RESUMO

Spinal muscular atrophy (SMA) is the most common genetic disease in children. SMA is generally caused by mutations in the gene SMN1. The survival of motor neurons (SMN) complex consists of SMN1, Gemins (2-8), and Strap/Unrip. We previously demonstrated smn1 and gemin5 inhibited tissue regeneration in zebrafish. Here we investigated each individual SMN complex member and identified gemin3 as another regeneration-essential gene. These three genes are likely pan-regenerative, since they affect the regeneration of hair cells, liver, and caudal fin. RNA-Seq analysis reveals that smn1, gemin3, and gemin5 are linked to a common set of genetic pathways, including the tp53 and ErbB pathways. Additional studies indicated all three genes facilitate regeneration by inhibiting the ErbB pathway, thereby allowing cell proliferation in the injured neuromasts. This study provides a new understanding of the SMN complex and a potential etiology for SMA and potentially other rare unidentified genetic diseases with similar symptoms.

3.
Elife ; 82019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30650056

RESUMO

Genome-wide association studies (GWAS) are a powerful approach for connecting genotype to phenotype. Most GWAS hits are located in cis-regulatory regions, but the underlying causal variants and their molecular mechanisms remain unknown. To better understand human cis-regulatory variation, we mapped quantitative trait loci for chromatin accessibility (caQTLs)-a key step in cis-regulation-in 1000 individuals from 10 diverse populations. Most caQTLs were shared across populations, allowing us to leverage the genetic diversity to fine-map candidate causal regulatory variants, several thousand of which have been previously implicated in GWAS. In addition, many caQTLs that affect the expression of distal genes also alter the landscape of long-range chromosomal interactions, suggesting a mechanism for long-range expression QTLs. In sum, our results show that molecular QTL mapping integrated across diverse populations provides a high-resolution view of how worldwide human genetic variation affects chromatin accessibility, gene expression, and phenotype. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that minor issues remain unresolved (see decision letter).


Assuntos
Mapeamento Cromossômico/métodos , Variação Genética , Genética Populacional , Sequências Reguladoras de Ácido Nucleico/genética , Sequência de Bases , Linhagem Celular , Cromatina/genética , Cromossomos Humanos/genética , Estudo de Associação Genômica Ampla , Humanos , Ligação Proteica , Locos de Características Quantitativas/genética , Fatores de Transcrição/metabolismo
4.
NPJ Regen Med ; 3: 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872546

RESUMO

Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration.

5.
Cell Regen ; 5: 3, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27795824

RESUMO

BACKGROUND: We are using genetics to identify genes specifically involved in hearing regeneration. In a large-scale genetic screening, we identified mgat5a, a gene in the N-glycosylation biosynthesis pathway whose activity negatively impacts hair cell regeneration. METHODS: We used a combination of mutant analysis in zebrafish and a hair cell regeneration assay to phenotype the loss of Mgat5a activity in zebrafish. We used pharmacological inhibition of N-glycosylation by swansonine. We also used over-expression analysis by mRNA injections to demonstrate how changes in N-glycosylation can alter cell signaling. RESULTS: We found that mgat5a was expressed in multiple tissues during zebrafish embryo development, particularly enriched in neural tissues including the brain, retina, and lateral line neuromasts. An mgat5a insertional mutation and a CRISPR/Cas9-generated truncation mutation both caused an enhancement of hair cell regeneration which could be phenocopied by pharmacological inhibition with swansonine. In addition to hair cell regeneration, inhibition of the N-glycosylation pathway also enhanced the regeneration of lateral line axon and caudal fins. Further analysis showed that N-glycosylation altered the responsiveness of TGF-beta signaling. CONCLUSIONS: The findings from this study provide experimental evidence for the involvement of N-glycosylation in tissue regeneration and cell signaling.

6.
Mech Dev ; 141: 51-61, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27264535

RESUMO

In the development of the Drosophila embryo, gene expression is directed by the sequence-specific interactions of a large network of protein transcription factors (TFs) and DNA cis-regulatory binding sites. Once the identity of the typically 8-10bp binding sites for any given TF has been determined by one of several experimental procedures, the sequences can be represented in a position weight matrix (PWM) and used to predict the location of additional TF binding sites elsewhere in the genome. Often, alignments of large (>200bp) genomic fragments that have been experimentally determined to bind the TF of interest in Chromatin Immunoprecipitation (ChIP) studies are trimmed under the assumption that the majority of the binding sites are located near the center of all the aligned fragments. In this study, ChIP/chip datasets are analyzed using the corresponding PWMs for the well-studied TFs; CAUDAL, HUNCHBACK, KNIRPS and KRUPPEL, to determine the distribution of predicted binding sites. All four TFs are critical regulators of gene expression along the anterio-posterior axis in early Drosophila development. For all four TFs, the ChIP peaks contain multiple binding sites that are broadly distributed across the genomic region represented by the peak, regardless of the prediction stringency criteria used. This result suggests that ChIP peak trimming may exclude functional binding sites from subsequent analyses.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Sítios de Ligação , Imunoprecipitação da Cromatina , Biologia Computacional , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto/genética , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA