Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793386

RESUMO

Some composite materials have been prepared, constituted by a cyclodextrin-bis-urethane-based nanosponge matrix in which a reduced graphene oxide/silver nanoparticles photocatalyst has been dispersed. Different chain extenders were employed for designing the nanosponge supports, in such a way as to decorate their hyper-cross-linked structure with diverse functionalities. Moreover, two different strategies were explored to accomplish the silver loading. The obtained systems were successfully tested as catalysts for the photodegradation of emerging pollutants such as model dyes and drugs. Enhancement of the photoactive species performance (up to nine times), due to the synergistic local concentration effect exerted by the nanosponge, could be assessed. Overall, the best performances were shown by polyamine-decorated materials, which were able to promote the degradation of some particularly resistant drugs. Some methodological issues pertaining to data collection are also addressed.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38603548

RESUMO

In this study, hydrogels were produced using a Schiff base reaction between two hyaluronic acid derivatives: one containing aldehyde groups (HA-Ald) and the other holding a diethylenetriamine with terminal amino groups (HA-DETA). The DETA portion promotes the in situ growth, complexation, and stabilization of silver nanoparticles (AgNPs), eliminating the need for external reducing agents. The reaction between HA-DETA and HA-Ald leads to the formation of imine bonds, which results in dynamically pH-responsive cross-linking. While the DETA capping ability helped in embedding the AgNPs, the on/off pH environmental responsivity of the hydrogel allows for a controlled and on-demand release of the drug, mainly when bacterial infections cause pH variation of the wound bed. The injectable hydrogels resulted in being highly compatible in contact with blood red cells, fibroblasts, and keratinocytes and capable of having a proliferative effect on an in vitro wound scratch model. The pH-responsive hydrogels showed proper antibacterial activity againstPseudomonas aeruginosaandStaphylococcus aureus, common bacterial strains presented in wound infections. Finally, in vivo wound model studies demonstrated an overall speeding up in the wound healing rate and advanced wound conditions in the experimental group treated with the hydrogels compared to control samples.

3.
Int J Biol Macromol ; 239: 124276, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011754

RESUMO

Protein-based materials recently emerged as good candidates for water cleaning applications, due to the large availability of the constituent material, their biocompatibility and the ease of preparation. In this work, new adsorbent biomaterials were created from Soy Protein Isolate (SPI) in aqueous solution using a simple environmentally friendly procedure. Protein microsponge-like structures were produced and characterized by means of spectroscopy and fluorescence microscopy methods. The efficiency of these structures in removing Pb2+ ions from aqueous solutions was evaluated by investigating the adsorption mechanisms. The molecular structure and, consequently, the physico-chemical properties of these aggregates can be readily tuned by selecting the pH of the solution during production. In particular, the presence of ß-structures typical of amyloids as well as an environment characterized by a lower dielectric constant seem to enhance metal binding affinity revealing that hydrophobicity and water accessibility of the material are key features affecting the adsorption efficiency. Presented results provide new knowledge on how raw plant proteins can be valorised for the production of new biomaterials. This may offer extraordinary opportunities towards the design and production of new tailorable biosorbents which can also be exploited for several cycles of purification with minimal reduction in performance. SYNOPSIS: Innovative, sustainable plant-protein biomaterials with tunable properties are presented as green solution for water purification from lead(II) and the structure-function relationship is discussed.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Proteínas de Soja/química , Cinética , Água/química , Análise Espectral , Adsorção , Purificação da Água/métodos , Materiais Biocompatíveis , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
4.
Environ Sci Pollut Res Int ; 29(60): 90231-90247, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35869342

RESUMO

Bilge waters are wastewaters produced on boats during navigation and usually contain hydrocarbons and oils. They cannot be directly released into the sea if not below a hydrocarbons concentration limit set by current legislation. Appropriate oil in water separator (OWS) systems can be installed on board boats to remove hydrocarbons from bilge water allowing their spillage into the sea. These systems may contain an adsorption step on a suitable adsorbent. Here, biochars produced from pyrolysis of dead Posidonia oceanica, pristine or chemically activated, have been tested as hydrocarbons adsorbents. Adsorption experiments with aqueous dispersions simulating bilge waters containing a marine gas oil (MGO) fuel for boats, a surfactant, and different NaCl concentrations were carrying out. The hydrocarbons concentrations before and after adsorption have been directly measured by using the reverse phase HPLC technique coupled with a fluorescence detector. These measurements are very fast and their reliability was verified by re-measuring the hydrocarbons concentrations of some samples with the GC-MS-MS technique, according to one of the traditional methods for hydrocarbons determination in emulsions. Different isotherm equations were used to fit the adsorption data. The biochars were characterized from the chemical-structural point of view by means of several instrumental techniques.


Assuntos
Água , Reprodutibilidade dos Testes
5.
J Colloid Interface Sci ; 610: 347-358, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923272

RESUMO

The production of new cost-effective biocompatible sorbent sustainable materials, with natural origins, able to remove heavy metals from water resources is nowadays highly desirable in order to reduce pollution and increase clean water availability. In this context, self-assembled protein materials with amyloid structures seem to have a great potential as natural platform for a broader development of highly-tunable structures. In this work we show how protein particulates, a generic form of protein aggregates, with spherical micro sized shape can be used as adsorbents of Pb2+ ions from aqueous solution. The effect of pH, ionic medium, ionic strength and temperature of the metal ion solution on the adsorption ability and affinity has been evaluated revealing the complexity of adsorption mechanisms which are the result of the balance of specific interactions with functional groups in protein structure and not specific ones common to all polypeptide chains, and possibly related to amyloid state and to modification of particulates hydration layer.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Temperatura , Água , Poluentes Químicos da Água/análise
6.
Molecules ; 26(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34946761

RESUMO

The interactions of dopamine [2-(3,4-Dihydroxyphenyl)ethylamine, (Dop-)] with cadmium(II), copper(II) and uranyl(VI) were studied in NaCl(aq) at different ionic strengths (0 ≤ I/mol dm-3 ≤ 1.0) and temperatures (288.15 ≤ T/K ≤ 318.15). From the elaboration of the experimental data, it was found that the speciation models are featured by species of different stoichiometry and stability. In particular for cadmium, the formation of only MLH, ML and ML2 (M = Cd2+; L = dopamine) species was obtained. For uranyl(VI) (UO22+), the speciation scheme is influenced by the use of UO2(acetate)2 salt as a chemical; in this case, the formation of ML2, MLOH and the ternary MLAc (Ac = acetate) species in a wide pH range was observed. The most complex speciation model was obtained for the interaction of Cu2+ with dopamine; in this case we observed the formation of the following species: ML2, M2L, M2L2, M2L2(OH)2, M2LOH and ML2OH. These speciation models were determined at each ionic strength and temperature investigated. As a further contribution to this kind of investigation, the ternary interactions of dopamine with UO22+/Cd2+ and UO22+/Cu2+ were investigated at I = 0.15 mol dm-3 and T = 298.15K. These systems have different speciation models, with the MM'L and M2M'L2OH [M = UO22+; M' = Cd2+ or Cu2+, L = dopamine] common species; the species of the mixed Cd2+ containing system have a higher stability with respect the Cu2+ containing one. The dependence on the ionic strength of complex formation constants was modelled by using both an extended Debye-Hückel equation that included the Van't Hoff term for the calculation of the formation enthalpy change values and the Specific Ion Interaction Theory (SIT). The results highlighted that, in general, the entropy is the driving force of the process. The quantification of the effective sequestering ability of dopamine towards the studied cations was evaluated by using a Boltzmann-type equation and the calculation of pL0.5 parameter. The sequestering ability was quantified at different ionic strengths, temperatures and pHs, and this resulted, in general, that the pL0.5 trend was always: UO22+ > Cu2+ > Cd2+.


Assuntos
Cádmio/química , Cobre/química , Dopamina/química , Cloreto de Sódio/química , Termodinâmica , Compostos de Urânio/química , Cátions/química , Estrutura Molecular , Concentração Osmolar
7.
Biomolecules ; 11(9)2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34572525

RESUMO

The interactions of dopamine [2-(3,4-Dihydroxyphenyl)ethylamine, (Dop-)] with methylmercury(II) (CH3Hg+), magnesium(II), calcium(II), and tin(II) were studied in NaCl(aq) at different ionic strengths and temperatures. Different speciation models were obtained, mainly characterized by mononuclear species. Only for Sn2+ we observed the formation of binuclear complexes (M2L2 and M2LOH (charge omitted for simplicity); M = Sn2+, L = Dop-). For CH3Hg+, the speciation model reported the ternary MLCl (M = CH3Hg+) complex. The dependence on the ionic strength of complex formation constants was modeled by using both an extended Debye-Hückel equation that included the Van't Hoff term for the calculation of enthalpy change values of the formation and the Specific Ion Interaction Theory (SIT). The results highlighted that, in general, the entropy is the driving force of the process. The sequestering ability of dopamine towards the investigated cations was evaluated using the calculation of pL0.5 parameter. The sequestering ability trend resulted to be: Sn2+ > CH3Hg+ > Ca2+ > Mg2+. For example, at I = 0.15 mol dm-3, T = 298.15 K and pH = 7.4, pL0.5 = 3.46, 2.63, 1.15, and 2.27 for Sn2+, CH3Hg+, Ca2+ and Mg2+ (pH = 9.5 for Mg2+), respectively. For the Ca2+/Dop- system, the precipitates collected at the end of the potentiometric titrations were analyzed by thermogravimetry (TGA). The thermogravimetric calculations highlighted the formation of solid with stoichiometry dependent on the different metal:ligand ratios and concentrations of the starting solutions.


Assuntos
Cátions Bivalentes/química , Dopamina/química , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Concentração Osmolar , Soluções , Temperatura , Termodinâmica , Termogravimetria
8.
Carbohydr Polym ; 267: 118151, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119126

RESUMO

Different cyclodextrin-calixarene nanosponges (CyCaNSs) have been characterized by means of FFC-NMR relaxometry, and used as sorbents to remove Pb2+ ions from aqueous solutions. Considering that the removal treatments may involve polluted waters with different characteristics, the adsorption experiments were performed on solutions without and with the addition of background salts, under different operational conditions. The adsorption abilities and affinities of the nanosponges towards Pb2+ ions were investigated by measuring the metal ion concentration by means of Inductively Coupled Plasma Emission Spectroscopy (ICP-OES) and Differential Pulse Anodic Stripping Voltammetry (DP-ASV). The acid-base properties of nanosponges and of metal ion as well as their interactions with the other interacting components of the systems have been considered in the evaluation of adsorption mechanism. Recycling and reuse experiments on the most efficient adsorbents were also performed. On the grounds of the results obtained, post-modified CyCaNSs appear promising materials for designing environmental remediation devices.


Assuntos
Calixarenos/química , Ciclodextrinas/química , Chumbo/isolamento & purificação , Adsorção , Recuperação e Remediação Ambiental/instrumentação , Reutilização de Equipamento , Cinética , Chumbo/química , Termodinâmica , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
9.
Biomolecules ; 10(6)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570991

RESUMO

8-hydroxyquinoline-2-carboxylic acid (8-HQA) has been found in high concentrations (0.5-5.0 mmol·dm-3) in the gut of Noctuid larvae (and in a few other lepidopterans), in which it is proposed to act as a siderophore. Since it is known that many natural siderophores are also involved in the uptake and metabolism of other essential elements than iron, this study reports some results on the investigation of 8-HQA interactions with molybdate (MoO42-, i.e., the main molybdenum form in aqueous environments), in order to understand the possible role of this ligand as molybdophore. A multi-technique approach has been adopted, in order to derive a comprehensive set of information necessary to assess the chemical speciation of the 8-HQA/MoO42- system, as well as the coordination behavior and the sequestering ability of 8-HQA towards molybdate. Chemical speciation studies have been performed in KCl(aq) at I = 0.2 mol·dm-3 and T = 298.15 K by ISE-H+ (glass electrode) potentiometric and UV/Vis spectrophotometric titrations. CV (Cyclic Voltammetry), DP-ASV (Differential Pulse-Anodic Stripping Voltammetry), ESI-MS experiments and quantum mechanical calculations have been also performed to derive information about the nature and possible structure of species formed. These results are also compared with those reported for the 8-HQA/Fe3+ system in terms of chemical speciation and sequestering ability of 8-HQA.


Assuntos
Hidroxiquinolinas/química , Molibdênio/química , Teoria da Densidade Funcional , Compostos Férricos/química , Soluções , Água/química
10.
Molecules ; 25(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070045

RESUMO

Several different definitions were in the past proposed to describe the term chemical speciation, and some of them were accepted from the scientific community [...].


Assuntos
Monitoramento Ambiental/métodos , Compostos Orgânicos/análise , Poluentes da Água/análise
11.
Molecules ; 25(3)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991662

RESUMO

The interactions of epinephrine ((R)-(-)-3,4-dihydroxy-α-(methylaminomethyl)benzyl alcohol; Eph-) with different toxic cations (methylmercury(II): CH3Hg+; dimethyltin(IV): (CH3)2Sn2+; dioxouranium(VI): UO22+) were studied in NaClaq at different ionic strengths and at T = 298.15 K (T = 310.15 K for (CH3)2Sn2+). The enthalpy changes for the protonation of epinephrine and its complex formation with UO22+ were also determined using isoperibolic titration calorimetry: HHL = -39 ± 1 kJ mol-1, HH2L = -67 ± 1 kJ mol-1 (overall reaction), HML = -26 ± 4 kJ mol-1, and HM2L2(OH)2 = 39 ± 2 kJ mol-1. The results were that UO22+ complexation by Eph- was an entropy-driven process. The dependence on the ionic strength of protonation and the complex formation constants was modeled using the extended Debye-Hückel, specific ion interaction theory (SIT), and Pitzer approaches. The sequestering ability of adrenaline toward the investigated cations was evaluated using the calculation of pL0.5 parameters. The sequestering ability trend resulted in the following: UO22+ >> (CH3)2Sn2+ > CH3Hg+. For example, at I = 0.15 mol dm-3 and pH = 7.4 (pH = 9.5 for CH3Hg+), pL0.5 = 7.68, 5.64, and 2.40 for UO22+, (CH3)2Sn2+, and CH3Hg+, respectively. Here, the pH is with respect to ionic strength in terms of sequestration.


Assuntos
Epinefrina/química , Compostos de Metilmercúrio/química , Óxidos/química , Termodinâmica , Urânio/química
12.
Molecules ; 24(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726704

RESUMO

The acid-base properties of two bifunctional 3-hydroxy-4-pyridinone ligands and their chelating capacity towards Zn2+, an essential bio-metal cation, were investigated in NaCl aqueous solutions by potentiometric, UV-Vis spectrophotometric, and 1H NMR spectroscopic titrations, carried out at 0.15 ≤ I/mol -1 ≤ 1.00 and 288.15 ≤ T/K ≤ 310.15. A study at I = 0.15 mol L-1 and T = 298.15 K was also performed for other three Zn2+/Lz- systems, with ligands belonging to the same family of compounds. The processing of experimental data allowed the determination of protonation and stability constants, which showed accordance with the data obtained from the different analytical techniques used, and with those reported in the literature for the same class of compounds. ESI-MS spectrometric measurements provided support for the formation of the different Zn2+/ligand species, while computational molecular simulations allowed information to be gained on the metal-ligand coordination. The dependence on ionic strength and the temperature of equilibrium constants were investigated by means of the extended Debye-Hückel model, the classical specific ion interaction theory, and the van't Hoff equations, respectively.


Assuntos
Concentração Osmolar , Piridonas/química , Temperatura , Zinco/química , Algoritmos , Cátions/química , Hidrólise , Ligantes , Metais/química , Modelos Moleculares , Modelos Teóricos , Estrutura Molecular , Termodinâmica
13.
Environ Sci Pollut Res Int ; 25(5): 4238-4253, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29178014

RESUMO

The adsorption capacity of ground hazelnut (HS) and almond (AS) shells towards Pb(II) and Cd(II) has been studied at pH = 5, in NaNO3 and NaCl ionic media, in the ionic strength range 0.05-0.5 mol L-1. Kinetic and equilibrium experiments were carried out by using the Differential Pulse Anodic Stripping Voltammetry technique to check the amount of the metal ion removed by HS and AS materials. Different kinetic and equilibrium equations were used to fit experimental data and a statistical study was done to establish the suitable model for the data fitting. A speciation study of the metal ions in solution was also done in order to evaluate the influence of the ionic medium on the adsorption process. TGA-DSC, FT-IR, and SEM-EDX techniques were used to characterize the adsorbent materials. The mechanism of metal ions adsorption was explained on the basis of the results obtained by the metal ions speciation study and the characterization of materials.


Assuntos
Corylus , Recuperação e Remediação Ambiental/métodos , Metais/química , Prunus dulcis , Poluentes Químicos da Água/química , Adsorção , Cádmio/química , Concentração de Íons de Hidrogênio , Íons , Nozes , Concentração Osmolar , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Int J Biol Macromol ; 92: 769-778, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27481343

RESUMO

The adsorption capacity of an activated carbon - calcium alginate composite material (ACAA-Ca) has been tested with the aim of developing a new and more efficient adsorbent material to remove Pb(II) ion from aqueous solution. The study was carried out at pH=5, in NaCl medium and in the ionic strength range 0.1-0.75molL-1. Differential Pulse Anodic Stripping Voltammetry (DP-ASV) technique was used to check the amount of Pb(II) ion removed during kinetic and equilibrium experiments. Different kinetic (pseudo first order, pseudo second order and Vermuelen) and equilibrium (Langmuir and Freundlich) models were used to fit experimental data, and were statistically compared. Calcium alginate (AA-Ca) improves the adsorption capacity (qm) of active carbon (AC) in the ACAA-Ca adsorbent material (e.g., qm=15.7 and 10.5mgg-1 at I=0.25molL-1, for ACAA-Ca and AC, respectively). SEM-EDX and thermogravimetric (TGA) measurements were carried out in order to characterize the composite material. The results of the speciation study on the Pb(II) solution and of the characterization of the ACAA-Ca and of the pristine AA-Ca and AC were evaluated in order to explain the specific contribution of AC and AA-Ca to the adsorption of the metal ion.


Assuntos
Alginatos/química , Carvão Vegetal/química , Chumbo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Cátions Bivalentes , Água Potável/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Concentração Osmolar , Temperatura
15.
Environ Sci Process Impacts ; 18(3): 323-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26780160

RESUMO

Vanadium (V) concentrations in industrial, urban and volcanic soils were sequentially extracted using a modified Tessier's method. The voltammetric technique was used to determine V concentrations in solutions obtained from the various extraction steps. At the reference stations, the V concentrations (sum of four individual fractions) in soils ranged from 0.72 to 0.24 g kg(-1) dry weight (d.w.) with a mean value of 0.18 g kg(-1) d.w. V concentrations in soils of the Palermo urban area ranged from 0.34 to 2.1 g kg(-1) d.w., in the Milazzo (industrial) area between 0.26 and 5.4 g kg(-1) d.w. and in the volcanic area near Mt. Etna from 0.91 to 2.9 g kg(-1) d.w. When the V concentrations around Mt. Etna were compared with those obtained at the reference stations, it was confirmed that Mt. Etna is a continuous source of V. In all the samples analyzed, the majority of V (from 94 to 100%) was detected in the fourth fraction.


Assuntos
Poluentes do Solo/análise , Vanádio/análise , Fracionamento Químico , Cidades , Técnicas Eletroquímicas , Monitoramento Ambiental , Indústrias , Itália , Erupções Vulcânicas
16.
Bioinorg Chem Appl ; 2015: 267985, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25733975

RESUMO

A model of synthetic saliva (SALMO, SALiva MOdel) is proposed for its use as standard medium in in vitro equilibrium and speciation studies of real saliva. The concentrations come out from the literature analysis of the composition of both real saliva and synthetic saliva. The chief interactions of main inorganic components of saliva, as well as urea and amino acids, are taken into account on the basis of a complex formation model, which also considers the dependence of the stability constants of these species on ionic strength and temperature. These last features allow the modelling of the speciation of saliva in different physiological conditions deriving from processes like dilution, pH, and temperature changes. To simplify equilibrium calculations, a plain approach is also proposed, in order to take into account all the interactions among the major components of saliva, by considering the inorganic components of saliva as a single 1 : 1 salt (MX), whose concentration is c MX = (1/2)∑c i (c i = analytical concentration of all the ions) and z ion charge calculated as z=±(I/c MX)(1/2) = ±1.163. The use of the Single Saliva Salt Model (S3M) considerably reduces the complexity of the systems to be investigated. In fact, only four species deriving from internal ionic medium interactions must be considered.

17.
Anal Bioanal Chem ; 405(2-3): 881-93, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22941067

RESUMO

A study on the interactions between CH(3)Hg(+) and some S, N and O donor ligands (2-mercaptopropanoic acid (thiolactic acid (H(2)TLA)), 3-mercaptopropanoic acid (H(2)MPA), 2-mercaptosuccinic acid (thiomalic acid (H(3)TMA)), D,L-penicillamine (H(2)PSH), L-cysteine (H(2)CYS), glutathione (H(3)GSH), N,N'-bis(3-aminopropyl)-1-4-diaminobutane (spermine (SPER)), 1,2,3,4,5,6-benzenehexacarboxylic acid (mellitic acid (H(6)MLT)) and ethylenediaminetetraacetic acid (H(4)EDTA)) is reported. The speciation models in aqueous solution and the possible structures of the complexes formed are discussed on the basis of potentiometric, calorimetric, UV spectrophotometric and electrospray mass spectrometric results. For the CH(3)Hg(+)-S donor ligand systems, the formation of ML(1-z) and MLH(2-z) complex species is observed, together with a diprotonated MLH(2)(3-z) species for CYS(2-), PSH(2-) and GSH(3-) and the mixed hydrolytic one ML(OH)(-z) for TLA(2-) and MPA(2-). The dependence of the stability on ionic strength and on temperature is also analysed. In the other CH(3)Hg(+)-L systems (L = MLT(6-), SPER and EDTA(4-)), ML(1-z), MLH(2-z) and MLH(2)(3-z) complex species are formed, together with the MLH(3)(4-z) species for SPER, the mixed hydrolytic ML(OH)(-z) one for SPER and EDTA, and the M(2)L(2-z) for EDTA only. On the basis of the speciation models proposed, the sequestering ability of the ligands towards methylmercury(II) cation is evaluated. All S donor ligands show a good sequestering power (at 10(-11) mol L(-1) level, in the pH range 4 to 8) following the trend MPA(2-) < PSH(2-) < GSH(3-) < TLA(2-) < CYS(2-) < TMA(3-), while significantly lower is the sequestering ability of MLT, SPER and EDTA (at 10(-3)-10(-5) mol L(-1) level, in the pH range 4 to 8).


Assuntos
Quelantes/química , Poluentes Ambientais/química , Recuperação e Remediação Ambiental , Cinética , Compostos de Metilmercúrio , Estrutura Molecular
18.
Biophys Chem ; 121(2): 121-30, 2006 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-16488529

RESUMO

The acid-base properties of Adenosine 5'-triphosphate (ATP) in NaCl and KCl aqueous solutions at different ionic strengths (0

Assuntos
Trifosfato de Adenosina/química , Cloreto de Potássio/química , Cloreto de Sódio/química , Eletroquímica , Concentração Osmolar
19.
Biophys Chem ; 117(2): 147-53, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15923076

RESUMO

Interaction of dioxouranium(VI) (uranyl) ion with ATP was studied by ligand/proton and metal/hydroxide displacement technique, at very low ionic strength and at I=0.15 mol L(-1), in aqueous Me4NCl and NaCl solutions, at t=25 degrees C. Measurements were carried out in the pH range 3-8.5, before the formation of precipitate. Computer analysis allowed us to find the quite stable species UO2(ATP)H2(0), UO2(ATP)H-, UO2(ATP)2-, UO2(ATP)2(6-), UO2(ATP)2H2(4-) and UO2(ATP)(OH)3- whose formation constants are (at I=0 mol L(-1)) logbeta(112)=18.21, logbeta(111)=14.70, logbeta(110)=9.14, logbeta(120)=12.84, logbeta(122)=24.82, and logbeta(11-1)=2.09, respectively. Different values were obtained in the above ionic media at I=0.15 mol L(-1) and the dependence on the ionic medium was interpreted in terms of interactions between the negatively charged complex species and cations of supporting electrolytes. The species more stable in NaCl than in Me4NCl are those with the highest negative charge, UO2(ATP)2(6-) and UO2(ATP)2H2(4-), and the extra stability of these species can be attributed to the interaction with Na+. Speciation profiles show that ATP can suppress UO2(2+) hydrolysis, and that in the neutral to slightly alkaline range the yield of complex UO2-ATP species is quite high. Comparison with other metal-ATP systems is also given in order to recognize the possibility of binding competition of uranyl ion in metal-ATP requiring enzymes for biochemical processes.


Assuntos
Trifosfato de Adenosina/química , Metais Pesados/química , Compostos de Urânio/química , Concentração de Íons de Hidrogênio , Hidrólise , Ligantes , Água/química
20.
Talanta ; 64(2): 510-7, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18969633

RESUMO

The formation of open chain polyammonium cation-fluoride and -carbonate complexes was studied by potentiometric and calorimetric techniques at t=25 degrees C. Several species of H(i)AL (A=amine; L=F(-), CO(3)(2-)) are formed in both systems with a mean stability log K=1.0zeta (zeta=|z(anion)xz(cation)|) and log K=2.0zeta for fluoride and carbonate, respectively. The comparison with analogous systems (chloride and acetate for fluoride and hydrogenphosphate, sulfate and malonate for carbonate) showed that fluoride and carbonate form the most stable species with open chain polyammonium cations, among low molecular weight anions. The N-alkyl substitution does not play negligible role in the stability of these complexes, the species formed by substituted amines being more stable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...