Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Vet Res ; 15(1): 455, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852473

RESUMO

BACKGROUND: The threat of poultry-origin H6 avian influenza viruses to human health emphasizes the importance of monitoring their evolution. South Africa's H6N2 epidemic in chickens began in 2001 and two co-circulating antigenic sub-lineages of H6N2 could be distinguished from the outset. The true incidence and prevalence of H6N2 in the country has been difficult to determine, partly due to the continued use of an inactivated whole virus H6N2 vaccine and the inability to distinguish vaccinated from non-vaccinated birds on serology tests. In the present study, the complete genomes of 12 H6N2 viruses isolated from various farming systems between September 2015 and February 2019 in three major chicken-producing regions were analysed and a serological experiment was used to demonstrate the effects of antigenic mismatch in diagnostic tests. RESULTS: Genetic drift in H6N2 continued and antigenic diversity in sub-lineage I is increasing; no sub-lineage II viruses were detected. Reassortment patterns indicated epidemiological connections between provinces as well as different farming systems, but there was no reassortment with wild bird or ostrich influenza viruses. The sequence mismatch between the official antigens used for routine hemagglutination inhibition (HI) testing and circulating field strains has increased steadily, and we demonstrated that H6N2 field infections are likely to be missed. More concerning, sub-lineage I H6N2 viruses acquired three of the nine HA mutations associated with human receptor-binding preference (A13S, V187D and A193N) since 2002. Most sub-lineage I viruses isolated since 2015 acquired the K702R mutation in PB2 associated with the ability to infect humans, whereas prior to 2015 most viruses in sub-lineages I and II contained the avian lysine marker. All strains had an unusual HA0 motif of PQVETRGIF or PQVGTRGIF. CONCLUSIONS: The H6N2 viruses in South African chickens are mutating and reassorting amongst themselves but have remained a genetically pure lineage since they emerged more than 18 years ago. Greater efforts must be made by government and industry in the continuous isolation and characterization of field strains for use as HI antigens, new vaccine seed strains and to monitor the zoonotic threat of H6N2 viruses.


Assuntos
Galinhas/virologia , Vírus da Influenza A/genética , Influenza Aviária/virologia , Animais , Deriva Genética , Genoma Viral , Testes de Inibição da Hemaglutinação/veterinária , Vírus da Influenza A/classificação , Vírus Reordenados/genética , Testes Sorológicos , África do Sul/epidemiologia , Vacinas de Produtos Inativados
2.
Avian Dis ; 60(1 Suppl): 286-95, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27309069

RESUMO

The extensive nature of ostrich farming production systems bears the continual risk of point introductions of avian influenza virus (AIV) from wild birds, but immune status, management, population density, and other causes of stress in ostriches are the ultimate determinants of the severity of the disease in this species. From January 2012 to December 2014, more than 70 incidents of AIV in ostriches were reported in South Africa. These included H5N2 and H7N1 low pathogenicity avian influenza (LPAI) in 2012, H7N7 LPAI in 2013, and H5N2 LPAI in 2014. To resolve the molecular epidemiology in South Africa, the entire South African viral repository from ostriches and wild birds from 1991 to 2013 (n = 42) was resequenced by next-generation sequencing technology to obtain complete genomes for comparison. The phylogenetic results were supplemented with serological data for ostriches from 2012 to 2014, and AIV-detection data from surveillance of 17 762 wild birds sampled over the same period. Phylogenetic evidence pointed to wild birds, e.g., African sacred ibis (Threskiornis aethiopicus), in the dissemination of H7N1 LPAI to ostriches in the Eastern and Western Cape provinces during 2012, in separate incidents that could not be epidemiologically linked. In contrast, the H7N7 LPAI outbreaks in 2013 that were restricted to the Western Cape Province appear to have originated from a single-point introduction from wild birds. Two H5N2 viruses detected in ostriches in 2012 were determined to be LPAI strains that were new introductions, epidemiologically unrelated to the 2011 highly pathogenic avian influenza (HPAI) outbreaks. Seventeen of 27 (63%) ostrich viruses contained the polymerase basic 2 (PB2) E627K marker, and 2 of the ostrich isolates that lacked E627K contained the compensatory Q591K mutation, whereas a third virus had a D701N mutation. Ostriches maintain a low upper- to midtracheal temperature as part of their adaptive physiology for desert survival, which may explain the selection in ratites for E627K or its compensatory mutations-markers that facilitate AIV replication at lower temperatures. An AIV prevalence of 5.6% in wild birds was recorded between 2012 and 2014, considerably higher than AIV prevalence for the southern African region of 2.5%-3.6% reported in the period 2007-2009. Serological prevalence of AI in ostriches was 3.7%, 3.6%, and 6.1% for 2012, 2013, and 2014, respectively. An annual seasonal dip in incidence was evident around March/April (late summer/autumn), with peaks around July/August (mid to late winter). H5, H6, H7, and unidentified serotypes were present at varying levels over the 3-yr period.


Assuntos
Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Struthioniformes/virologia , Animais , Suscetibilidade a Doenças , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Influenza Aviária/imunologia , Filogenia , Struthioniformes/imunologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...