Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 46(3): 907-917, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28009912

RESUMO

Herein, we report on the versatile reactions of CH3C(CH2PPh2)3 as well as CH3Si(CH2PPh2)3 derived Ni-complexes. While Ni[CH3C(CH2PPh2)3] complexes reveal high stability, the Ni[CH3Si(CH2PPh2)3] analogs show rapid decomposition at room temperature and afford the unprecedented pseudo-tetrahedral phosphino methanide complex 5. We provide a detailed electronic structure of 5 from X-ray absorption and emission spectroscopy data analysis in combination with DFT calculations, as well as from comparison with structurally related complexes. A mechanistic study for the formation of complex 5 by reaction with BF4- is presented, based on a comparison of experimental data with quantum chemical calculations. We also show a simple route towards isolable Ni(i)-complexes on the gram scale.

2.
Inorg Chem ; 55(3): 1183-91, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26751622

RESUMO

The possibility to alter properties of metal complexes without significant steric changes is a useful tool to tailor the reactivity of the complexes. Herein we present the synthesis of iron complexes with the tripodal phosphane ligands Triphos and Triphos(Si) and report on their different coordination properties. Whereas reaction of Triphos(Si) and FeX2 (X = Cl, Br) exclusively afforded (Triphos(Si))FeX2 with a κ(2)-coordinated ligand, the homologous C-derived Fe complexes show rapid conversion in solution to afford [(Triphos)Fe(CH3CN)3][Fe2Cl6] or [(Triphos)Fe(CH3CN)3][FeBr4], respectively. The structural conversion was found to be temperature- and solvent-dependent and was accompanied by a linear change of the overall magnetization. The different ligand influence was shown to have a significant effect on the ability of (Triphos(Si))FeCl2 and (Triphos)FeCl2 to perform the Sonogashira cross-coupling reaction of 4-iodotoluene and phenyl acetylene as well as the hydrosilylation of acetophenone. The results presented herein show the different coordination properties of two structurally homologous tripodal ligands and demonstrate the importance of geometrically controlled ligand field splitting on the stability and reactivity of metal complexes. The C/Si exchange therefore provides a simple and straightforward tool to manipulate properties and reactivity of metal complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA