Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(22): 226401, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36493449

RESUMO

We show that graphene can be magnetized by coupling to a ferromagnetic Co film through a Au monolayer. The presence of dislocation loops under graphene leads to a ferrimagnetic ordering of moments in the two C sublattices. It is shown that the band gap of ∼80 meV in the K[over ¯] point has a magnetic nature and exists for ferrimagnetic ordering. Interplay between Rashba and exchange couplings is evidenced by spin splitting asymmetry in spin-ARPES measurements and fully supported by DFT calculation of a (9×9) unit cell. Owing to sign-opposite Berry curvatures for K[over ¯] and K[over ¯]^{'} valleys, the synthesized system is promising for the realization of a circular dichroism Hall effect.


Assuntos
Grafite , Meio Ambiente , Frutas
2.
J Phys Chem Lett ; 13(20): 4612-4620, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35588008

RESUMO

A micro- or nanosized electrically controlled source of optical radiation is one of the key elements in optoelectronic systems. The phenomenon of light emission via inelastic tunneling (LEIT) of electrons through potential barriers or junctions opens up new possibilities for development of such sources. In this work, we present a simple approach for fabrication of nanoscale electrically driven light sources based on LEIT. We employ STM lithography to locally modify the surface of a Si/Au film stack via heating, which is enabled by a high-density tunnel current. Using the proposed technique, hybrid Si/Au nanoantennas with a minimum diameter of 60 nm were formed. Studying both electronic and optical properties of the obtained nanoantennas, we confirm that the resulting structures can efficiently emit photons in the visible range because of inelastic scattering of electrons. The proposed approach allows for fabrication of nanosized hybrid nanoantennas and studying their properties using STM.

3.
Nano Lett ; 18(3): 1564-1574, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29365269

RESUMO

A rich class of spintronics-relevant phenomena require implementation of robust magnetism and/or strong spin-orbit coupling (SOC) to graphene, but both properties are completely alien to it. Here, we for the first time experimentally demonstrate that a quasi-freestanding character, strong exchange splitting and giant SOC are perfectly achievable in graphene at once. Using angle- and spin-resolved photoemission spectroscopy, we show that the Dirac state in the Au-intercalated graphene on Co(0001) experiences giant splitting (up to 0.2 eV) while being by no means distorted due to interaction with the substrate. Our calculations, based on the density functional theory, reveal the splitting to stem from the combined action of the Co thin film in-plane exchange field and Au-induced Rashba SOC. Scanning tunneling microscopy data suggest that the peculiar reconstruction of the Au/Co(0001) interface is responsible for the exchange field transfer to graphene. The realization of this "magneto-spin-orbit" version of graphene opens new frontiers for both applied and fundamental studies using its unusual electronic bandstructure.

4.
Nano Lett ; 16(7): 4535-43, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27248659

RESUMO

The implementation of future graphene-based electronics is essentially restricted by the absence of a band gap in the electronic structure of graphene. Options of how to create a band gap in a reproducible and processing compatible manner are very limited at the moment. A promising approach for the graphene band gap engineering is to introduce a large-scale sublattice asymmetry. Using photoelectron diffraction and spectroscopy we have demonstrated a selective incorporation of boron impurities into only one of the two graphene sublattices. We have shown that in the well-oriented graphene on the Co(0001) surface the carbon atoms occupy two nonequivalent positions with respect to the Co lattice, namely top and hollow sites. Boron impurities embedded into the graphene lattice preferably occupy the hollow sites due to a site-specific interaction with the Co pattern. Our theoretical calculations predict that such boron-doped graphene possesses a band gap that can be precisely controlled by the dopant concentration. B-graphene with doping asymmetry is, thus, a novel material, which is worth considering as a good candidate for electronic applications.

5.
ACS Nano ; 9(7): 7314-22, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26121999

RESUMO

Embedding foreign atoms or molecules in graphene has become the key approach in its functionalization and is intensively used for tuning its structural and electronic properties. Here, we present an efficient method based on chemical vapor deposition for large scale growth of boron-doped graphene (B-graphene) on Ni(111) and Co(0001) substrates using carborane molecules as the precursor. It is shown that up to 19 at. % of boron can be embedded in the graphene matrix and that a planar C-B sp(2) network is formed. It is resistant to air exposure and widely retains the electronic structure of graphene on metals. The large-scale and local structure of this material has been explored depending on boron content and substrate. By resolving individual impurities with scanning tunneling microscopy we have demonstrated the possibility for preferential substitution of carbon with boron in one of the graphene sublattices (unbalanced sublattice doping) at low doping level on the Ni(111) substrate. At high boron content the honeycomb lattice of B-graphene is strongly distorted, and therefore, it demonstrates no unballanced sublattice doping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...