Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671651

RESUMO

By dint of the aging population and further deepened with the Covid-19 pandemic, lung disease has turned out to be a major cause of worldwide morbidity and mortality. The condition is exacerbated when the immune system further attacks the healthy, rather than the diseased, tissue within the lung. Governed by unremittingly proliferating mesenchymal cells and increased collagen deposition, if inflammation persists, as frequently occurs in aging lungs, the tissue develops tumors and/or turns into scars (fibrosis), with limited regenerative capacity and organ failure. Fas ligand (FasL, a ligand of the Fas cell death receptor) is a key factor in the regulation of these processes. FasL is primarily found in two forms: full length (membrane, or mFasL) and cleaved (soluble, or sFasL). We and others found that T-cells expressing the mFasL retain autoimmune surveillance that controls mesenchymal, as well as tumor cell accumulation following an inflammatory response. However, mesenchymal cells from fibrotic lungs, tumor cells, or cells from immune-privileged sites, resist FasL+ T-cell-induced cell death. The mechanisms involved are a counterattack of immune cells by FasL, by releasing a soluble form of FasL that competes with the membrane version, and inhibits their cell death, promoting cell survival. This review focuses on understanding the previously unrecognized role of FasL, and in particular its soluble form, sFasL, in the serum of aged subjects, and its association with the evolution of lung disease, paving the way to new methods of diagnosis and treatment.


Assuntos
COVID-19/imunologia , Proteína Ligante Fas/imunologia , Pneumopatias/imunologia , Pulmão/imunologia , Fatores Etários , Idoso , COVID-19/sangue , Morte Celular/imunologia , Proteína Ligante Fas/sangue , Humanos , Imunidade , Pneumopatias/sangue , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Linfócitos T/imunologia
2.
Cells ; 9(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053892

RESUMO

A prominent feature of obstructed tissue regeneration following injury in general, and fibrotic lung tissue in particular, is fibroblast proliferation and accumulation. The Fas/FasL apoptotic pathway has been shown to be involved in human idiopathic pulmonary fibrosis (IPF) and bleomycin-induced lung fibrosis in rodents. We previously showed that in normal injury repair, myofibroblasts' accumulation is followed by their decline by FasL+ T cell-induced cell death. In pathological lung fibrosis, myofibroblasts resist cell death and accumulate. Like other members of the tumor necrosis factor (TNF) family, membrane-bound FasL can be cleaved from the cell surface to generate a soluble form (sFasL). Metalloproteinases (MMPs) are known to convert the membrane-bound form of FasL to sFasL. MMP-7 knockout (KO) mice were shown to be protected from bleomycin (BLM)-induced lung fibrosis. In this study, we detected increased levels of sFasL in their blood serum, as in the lungs of patients with IPF, and IPF-lung myofibroblast culture medium. In this study, using an MMP-inhibitor, we showed that sFasL is decreased in cultures of IPF-lung myofibroblasts and BLM-treated lung myofibroblasts, and in the blood serum of MMP-7KO mice. Moreover, resistant fibrotic-lung myofibroblasts, from the lungs of humans with IPF and of BLM-treated mice, became susceptible to T-cell induced cell death in a co-culture following MMP-inhibition- vs. control-treatment or BLM-treated MMP-7KO vs. wild-type mice, respectively. sFasL may be an unrecognized mechanism for MMP-7-mediated decreased tissue regeneration following injury and the evolution of lung fibrosis.


Assuntos
Proteína Ligante Fas/genética , Fibrose Pulmonar Idiopática/genética , Metaloproteinase 7 da Matriz/genética , Receptor fas/genética , Animais , Apoptose/genética , Bleomicina/toxicidade , Morte Celular/genética , Feminino , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Masculino , Metaloproteinases da Matriz , Camundongos , Camundongos Knockout , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Regeneração/genética , Transdução de Sinais/genética
3.
Cells ; 8(10)2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591327

RESUMO

CD44, an adhesion-molecule promoting cell-migration, is shown here to increase in stress conditions following bleomycin-induced apoptosis in alveolar epithelial cells (AECs), a main target of lung injury. In vivo, it inhibits tissue regeneration and leads to fibrosis. We show that some AECs survive by the ataxia-telangiectasia mutated kinase/ATM pathway, and undergo a CD44-mediated epithelial-mesenchymal transdifferentiation (EMT) with migratory capacities in vitro, and in vivo. We assessed apoptosis vs. proliferation of AECs following bleomycin, ATM/P53 signaling pathway in AECs, and CD44 involvement in EMT, cell motility and tissue regeneration in vitro and in vivo. Expression of survival genes, CD44, and ATM/p53 pathway was elevated in AECs surviving bleomycin injury, as were the markers of EMT (downregulation of E-cadherin, upregulation of N-cadherin and vimentin, nuclear translocation of ß-catenin). Inhibition of CD44 decreased AECs transdifferentiation. Bleomycin-treated chimeric CD44KO-mice had decreased EMT markers, ATM, and mesenchymal cells (α-SMA+) accumulation in lung, increased surfactant-b, diminished lung mesenchymal cell motility, and increased lung tissue regenerative capacity following bleomycin injury, as indicated by lung collagen content and semiquantitave morphological index scoring. Thus, AECs surviving lung injury are plastic and undergo ATM-mediated, CD44-dependent transdifferentiation, preventing tissue regeneration and promoting fibrosis. Synthetic or natural compounds that downregulate CD44 may improve tissue regeneration following injury.


Assuntos
Células Epiteliais Alveolares/fisiologia , Transição Epitelial-Mesenquimal/genética , Receptores de Hialuronatos/fisiologia , Lesão Pulmonar/patologia , Regeneração/genética , Células Epiteliais Alveolares/efeitos dos fármacos , Animais , Apoptose/genética , Biomarcadores , Bleomicina , Linhagem Celular , Técnicas de Inativação de Genes , Receptores de Hialuronatos/antagonistas & inibidores , Receptores de Hialuronatos/genética , Lesão Pulmonar/induzido quimicamente , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Int J Mol Sci ; 20(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248154

RESUMO

Telomeres are distal chromosome regions associated with specific protein complexes that protect the chromosome against degradation and aberrations. Telomere maintenance capacity is an essential indication of healthy cell populations, and telomere damage is observed in processes such as malignant transformation, apoptosis, or cell senescence. At a cellular level, telomere damage may result from genotoxic stress, decreased activity of telomerase enzyme complex, dysfunction of shelterin proteins, or changes in expression of telomere-associated RNA such as TERRA. Clinical evidence suggests that mutation of telomerase genes (Tert/Terc) are associated with increased risk of congenital as well as age-related diseases (e.g., pneumonitis, idiopathic pulmonary fibrosis (IPF), dyskeratosis congenita, emphysema, nonspecific interstitial pneumonia, etc.). Thus, telomere length and maintenance can serve as an important prognostic factor as well as a potential target for new strategies of treatment for interstitial lung diseases (ILDs) and associated pulmonary pathologies.


Assuntos
Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Doenças Pulmonares Intersticiais/patologia , Mutação , RNA Longo não Codificante , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...