Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Immunol Methods ; 505: 113268, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421364

RESUMO

Bronchial asthma (BA) is a heterogeneous chronic inflammatory disease of the airways. The majority of patients with mild to moderate BA develop Th2-biased eosinophilic pulmonary inflammation and respond well to corticosteroid treatment. However up to 10% of BA patients develop severe pathology, which is associated with neutrophilic inflammation and resistant to conventional corticosteroid therapy. Contrary to eosinophil-predominant airway inflammation neutrophilic BA is developed through Th1- and Th17-immune responses. However, the etiology of corticoid insensitive neutrophilic BA is still remains unclear. Therefore, in the current study we developed a mouse model of BA with predominant neutrophilic rather than eosinophilic pulmonary inflammation. BALB/c mice were immunized with the mixture of the ovalbumin allergen and Freund's adjuvant, followed by aerosol challenge with the same allergen mixed with E. coli lipopolysaccharide. As a result, mice developed the main BA manifestations: production of allergen specific IgE, development of airway hyperreactivity, airway remodeling and pulmonary neutrophilic inflammation. Moreover, this pathology developed through Th1- and Th17-dependent mechanisms and mice with induced neutrophilic BA phenotype responded poorly to dexamethasone treatment, that coincide to clinical observations. The established mouse model could be useful both for studying the pathogenesis and for testing novel approaches to control neutrophilic BA.


Assuntos
Asma , Hiper-Reatividade Brônquica , Pneumonia , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Alérgenos , Animais , Hiper-Reatividade Brônquica/patologia , Modelos Animais de Doenças , Escherichia coli , Humanos , Inflamação , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos , Ovalbumina , Pneumonia/patologia , Esteroides/uso terapêutico
2.
J Exp Biol ; 222(Pt 6)2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30877231

RESUMO

Echinoderms, possessing outstanding regenerative capabilities, provide a unique model system for the study of response to injury. However, little is known about the proteomic composition of coelomic fluid, an important biofluid circulating throughout the animal's body and reflecting the overall biological status of the organism. In this study, we used LC-MALDI tandem mass spectrometry to characterize the proteome of the cell-free coelomic fluid of the starfish Asterias rubens and to follow the changes occurring in response to puncture wound and blood loss. In total, 91 proteins were identified, of which 61 were extracellular soluble and 16 were bound to the plasma membrane. The most represented functional terms were 'pattern recognition receptor activity' and 'peptidase inhibitor activity'. A series of candidate proteins involved in early response to injury was revealed. Ependymin, ß-microseminoprotein, serum amyloid A and avidin-like proteins, which are known to be involved in intestinal regeneration in the sea cucumber, were also identified as injury-responsive proteins. Our results expand the list of proteins potentially involved in defense and regeneration in echinoderms and demonstrate dramatic effects of injury on the coelomic fluid proteome.


Assuntos
Asterias/fisiologia , Proteoma/fisiologia , Animais
3.
Arthropod Struct Dev ; 49: 85-102, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30496890

RESUMO

This study is the first attempt to describe the ultrastructure and functional morphology of the dermal glands in Limnochares aquatica (L., 1758). The dermal glands were studied using light-optical, SEM and TEM microscopy methods during different stages of their activity. In contrast to the vast majority of other fresh water mites, dermal glands of the studied species are originally multiplied and scattered freely over the mite body surface. The opening of the glands is saddle-like, formed of several tight cuticular folds and oriented freely to the long axis of the mite body. Either a small cuticular spine or, rarely, a slim sensitive seta is placed on one pole of the opening. On the inside, the central gland portion is provided with a complex cuticular helicoid armature. The glands are composed of prismatic cells situated around the intra-alveolar lumen, variously present, and look like a fig-fruit with the basal surface facing the body cavity. The glands are provided with extremely numerous microtubules, frequently arranged in bundles, and totally devoid of synthetic apparatus such as RER cisterns and Golgi bodies. Three states of the gland morphology depending on their functional activity may be recognized: (i) glands without secretion with highly folded cell walls and numerous microtubules within the cytoplasm, (ii) glands with an electron-dense granular secretion in the expanded vacuoles and (iii) glands with the secretion totally extruded presenting giant empty vacuoles bordered with slim cytoplasmic strips on the periphery. Summer specimens usually show the first gland state, whereas winter specimens, conversely, more often demonstrate the second and the third states. This situation may depend on some factors like changes of the seasonal temperature, pH, or oxygenation of the ambient water. On the assumption of the morphological characters, dermal glands may be classified not as secretory but as a special additional excretory organ system of the body cavity. Despite the glands lack cambial cells, restoration of functions after releasing of 'secretion' looks possible. Organization of dermal glands is discussed in comparison to other water mites studied.


Assuntos
Ácaros/anatomia & histologia , Animais , Glândulas Exócrinas/anatomia & histologia , Glândulas Exócrinas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Ácaros/ultraestrutura
4.
Exp Cell Res ; 314(5): 1030-8, 2008 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-18215660

RESUMO

The NF-kappaB/RelA family of transcription factors regulates inducible transcription of a large number of genes in response to diverse stimuli. Little is known, however, about the location of NF-kappaB in the cytoplasm and the transport mechanism to the nucleus. We found that NF-kappaB is associated with the actin-binding protein alpha-actinin-4. NF-kappaB and alpha-actinin-4 co-localized along actin stress fibers and in membrane lamellae in A431 cells. After a 30-min stimulation with EGF or TNF-alpha, alpha-actinin-4 and p65 were found in the nucleus. Disruption of cytoskeleton by cytochalasin D prior to treatment with TNF-alpha led to increase of p65 nuclear translocation. Antibodies to p65 subunit of NF-kappaB co-immunoprecipitated alpha-actinin-4 from A431 cell lysates and nuclear extracts, but alpha-actinin-1 and beta-actin were not found in the precipitates. Affinity chromatography experiments displayed that p65 and p50 subunits of NF-kappaB can bind to matrix-bound chicken gizzard alpha-actinin. We suggest that the alpha-actinin-4 is important for the NF-kappaB nuclear translocation and its functions inside the nucleus.


Assuntos
Actinina/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas dos Microfilamentos/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Linhagem Celular Tumoral , Galinhas , Citoplasma/química , Humanos , Ligação Proteica , Fibras de Estresse
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...