Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lymphat Res Biol ; 17(5): 512-517, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30864890

RESUMO

Background: Mesenteric lymph (ML) has been implicated in the development of multiple organ dysfunction syndrome in critical illness. Extracellular RNAs play a role in cell-to-cell communication during physiological and disease processes but they are rarely studied in ML. We aimed at examining the RNA profiles of peripheral plasma, ML, and ML's extracellular vesicle (ML-EV) and triglyceride-rich lipoprotein (ML-TRL) fractions, obtained from rodent models of critical illness. Methods and Results: We collected ML for 5 hours from rodent models of critical illness [Acute Pancreatitis, Cecal Ligation and Incision (CLI), Gut Ischemia-Reperfusion (IR)] and matching Sham control rats. ML-EV and ML-TRL fractions were also isolated. RNA sequencing was performed on the RNA extracted from ML, ML-EV, ML-TRL, and plasma by using the Ion Torrent Personal Genome Machine platform. RNA sequences were searched using the Basic Local Alignment Search Tool against rat genome and RefSeq, microRNA (miRNA), genomic tRNA, functional RNA, and Genbank nucleotide databases, and the read counts were analyzed. Each sample type had a distinct RNA profile. ML contained more RNA per volume and a larger proportion of tRNA fragments than plasma. ML-EVs were enriched with miRNA, whereas ML-TRLs contained low absolute amounts of RNA. The RNA size profiles for CLI and Gut IR were different from Sham. ML carried intestinal RNAs and in a CLI model it was significantly enriched with bacterial RNA sequences. Conclusions: We found the distinct but diverse RNA profiles of ML and its compartments, and their different profiles in critical illness. Intestinal-derived small RNAs in ML may have a direct role in critical illness and utility as potential biomarkers.


Assuntos
Biomarcadores , Estado Terminal , Linfa , Mesentério/irrigação sanguínea , RNA , Doença Aguda , Animais , Modelos Animais de Doenças , Pancreatite/diagnóstico , Pancreatite/genética , Pancreatite/metabolismo , Prognóstico , Ratos
2.
Dig Dis Sci ; 63(12): 3317-3328, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30182310

RESUMO

BACKGROUND: Triglyceride-rich lipoproteins are important in dietary lipid absorption and subsequent energy distribution in the body. Their importance in the gut-lymph may have been overlooked in sepsis, the most common cause of critical illness, and in gut ischemia-reperfusion injury, a common feature of many critical illnesses. AIMS: We aimed to undertake an exploratory study of triglyceride-rich lipoprotein fractions in gut-lymph using untargeted metabolic profiling to identify altered metabolites in sepsis or gut ischemia-reperfusion. METHODS: The gut-lymph was collected from rodent sham, sepsis, and gut ischemia-reperfusion models. The triglyceride-rich lipoprotein-enriched fractions isolated from the gut-lymph were subjected to a dual metabolomics analysis approach: non-polar metabolite analysis by ultra-high performance liquid chromatography-mass spectrometry and polar metabolite analysis by gas chromatography-mass spectrometry. RESULTS: The metabolite analysis of gut-lymph triglyceride-rich lipoprotein fractions revealed a significant increase (FDR-adjusted P value < 0.05) in myo-inositol in the sepsis group and monoacylglycerols [(18:1) and (18:2)] in gut ischemia-reperfusion. There were no significantly increased specific metabolites in the lipoprotein-enriched fractions of both sepsis and gut ischemia-reperfusion. In contrast, there was a widespread decrease in multiple lipid species in sepsis (35 out of 190; adjusted P < 0.05), but not in the gut ischemia-reperfusion. CONCLUSIONS: Increased levels of myo-inositol and monoacylglycerols, and decreased multiple lipid species in the gut-lymph triglyceride-rich lipoprotein fraction could be candidates for new biomarkers and/or involved in the progression of sepsis and gut ischemia-reperfusion pathobiology.


Assuntos
Quilo/metabolismo , Lipoproteínas/metabolismo , Traumatismo por Reperfusão/metabolismo , Sepse/metabolismo , Triglicerídeos/metabolismo , Animais , Biomarcadores/metabolismo , Cromatografia Líquida/métodos , Modelos Animais de Doenças , Absorção Gastrointestinal/fisiologia , Inositol/metabolismo , Espectrometria de Massas/métodos , Metabolômica/métodos , Monoglicerídeos/metabolismo , Ratos , Ratos Sprague-Dawley
3.
Am J Physiol Cell Physiol ; 312(2): C190-C197, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903587

RESUMO

Diabetic cardiomyopathy is accompanied by metabolic and ultrastructural alterations, but the impact of the structural changes on metabolism itself is yet to be determined. Morphometric analysis of mitochondrial shape and spatial organization within transverse sections of cardiomyocytes from control and streptozotocin-induced type I diabetic Sprague-Dawley rats revealed that mitochondria are 20% smaller in size while their spatial density increases by 53% in diabetic cells relative to control myocytes. Diabetic cells formed larger clusters of mitochondria (60% more mitochondria per cluster) and the effective surface-to-volume ratio of these clusters increased by 22.5%. Using a biophysical computational model we found that this increase can have a moderate compensatory effect by increasing the availability of ATP in the cytosol when ATP synthesis within the mitochondrial matrix is compromised.


Assuntos
Trifosfato de Adenosina/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Modelos Cardiovasculares , Animais , Tamanho Celular , Células Cultivadas , Simulação por Computador , Mitocôndrias Cardíacas/patologia , Fosforilação Oxidativa , Ratos , Ratos Sprague-Dawley
4.
PLoS Comput Biol ; 11(9): e1004417, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26335304

RESUMO

Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which changes in [Ca2+]i can be detected. Using spatial point process statistics techniques we developed a novel method to simulate the spatial distribution of RyR clusters, which act as the major mediators of contractile Ca2+ release, upon a physiologically-realistic cellular landscape composed of tightly-packed mitochondria and myofibrils. We applied this method to computationally combine confocal-scale (~ 200 nm) data of RyR clusters with 3D electron microscopy data (~ 30 nm) of myofibrils and mitochondria, both collected from adult rat left ventricular myocytes. Using this hybrid-scale spatial model, we simulated reaction-diffusion of [Ca2+]i during the rising phase of the transient (first 30 ms after initiation). At 30 ms, the average peak of the simulated [Ca2+]i transient and of the simulated fluorescence intensity signal, F/F0, reached values similar to that found in the literature ([Ca2+]i ≈1 µM; F/F0≈5.5). However, our model predicted the variation in [Ca2+]i to be between 0.3 and 12.7 µM (~3 to 100 fold from resting value of 0.1 µM) and the corresponding F/F0 signal ranging from 3 to 9.5. We demonstrate in this study that: (i) heterogeneities in the [Ca2+]i transient are due not only to heterogeneous distribution and clustering of mitochondria; (ii) but also to heterogeneous local densities of RyR clusters. Further, we show that: (iii) these structure-induced heterogeneities in [Ca2+]i can appear in line scan data. Finally, using our unique method for generating RyR cluster distributions, we demonstrate the robustness in the [Ca2+]i transient to differences in RyR cluster distributions measured between rat and human cardiomyocytes.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/química , Sinalização do Cálcio/fisiologia , Biologia Computacional , Simulação por Computador , Masculino , Mitocôndrias/química , Modelos Biológicos , Miócitos Cardíacos/química , Miofibrilas/química , Ratos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/química
5.
Liver Transpl ; 21(3): 396-407, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25312517

RESUMO

Steatotic livers are susceptible to cold ischemia, which is thought to be secondary to mitochondrial dysfunction. Ischemic preconditioning (IPC) has been reported to improve liver function in the setting of warm ischemia/reperfusion injury, but the effect of IPC on steatotic liver mitochondrial function (MF) with cold ischemia has not been previously evaluated. We aimed to evaluate MF with various severities of hepatic steatosis after various durations of cold ischemia storage with or without IPC. Male Sprague-Dawley rats were fed a normal diet or a high-fat/high-sucrose diet for 1, 2, or 4 weeks to induce mild (<30%), moderate (30%-60%), or severe (>60%) macrovesicular steatosis, respectively. Liver MF was tested with high-resolution respirometry after 1.5, 4, 8, 12, 18, and 24 hours of cold ischemia. Rats in each group (n = 10) underwent 10 minutes of IPC or no IPC before cold ischemia. The baseline (time 0) respiration was similar for lean and severely steatotic livers despite decreased mitochondrial complex I (C-I) activity in severely steatotic livers. Hepatic steatosis was associated with increased C-I-mediated leaks and decreased respiratory control ratios (RCRs) after cold ischemia. Mildly, moderately, and severely steatotic livers showed significantly lower RCRs after 8, 1.5, and 1.5 hours of cold ischemia, respectively, in comparison with lean livers. IPC restored RCRs in mildly steatotic livers to levels comparable to those in lean livers for up to 24 hours of cold ischemia via the attenuation of C-I-mediated leaks, but it had no beneficial effect on moderately and severely steatotic livers. In conclusion, steatotic livers exhibited apparent mitochondrial dysfunction through an alteration in C-I activity, and this made them more susceptible to prolonged cold ischemia. The clinically based IPC protocol used here restored MF in cases of mild hepatic steatosis by attenuating C-I-mediated leaks after prolonged cold ischemia, but it did work not in livers with moderate or severe steatosis.


Assuntos
Isquemia Fria/efeitos adversos , Complexo I de Transporte de Elétrons/metabolismo , Fígado/enzimologia , Mitocôndrias Hepáticas/enzimologia , Hepatopatia Gordurosa não Alcoólica/complicações , Traumatismo por Reperfusão/etiologia , Animais , Modelos Animais de Doenças , Precondicionamento Isquêmico/métodos , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/enzimologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/diagnóstico , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/prevenção & controle , Fatores de Risco , Índice de Gravidade de Doença , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...