Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Cancer ; 24(3): 192-215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287107

RESUMO

Inactivation of the most important tumour suppressor gene TP53 occurs in most, if not all, human cancers. Loss of functional wild-type p53 is achieved via two main mechanisms: mutation of the gene leading to an absence of tumour suppressor activity and, in some cases, gain-of-oncogenic function; or inhibition of the wild-type p53 protein mediated by overexpression of its negative regulators MDM2 and MDMX. Because of its high potency as a tumour suppressor and the dependence of at least some established tumours on its inactivation, p53 appears to be a highly attractive target for the development of new anticancer drugs. However, p53 is a transcription factor and therefore has long been considered undruggable. Nevertheless, several innovative strategies have been pursued for targeting dysfunctional p53 for cancer treatment. In mutant p53-expressing tumours, the predominant strategy is to restore tumour suppressor function with compounds acting either in a generic manner or otherwise selective for one or a few specific p53 mutations. In addition, approaches to deplete mutant p53 or to target vulnerabilities created by mutant p53 expression are currently under development. In wild-type p53 tumours, the major approach is to protect p53 from the actions of MDM2 and MDMX by targeting these negative regulators with inhibitors. Although the results of at least some clinical trials of MDM2 inhibitors and mutant p53-restoring compounds are promising, none of the agents has yet been approved by the FDA. Alternative strategies, based on a better understanding of p53 biology, the mechanisms of action of compounds and treatment regimens as well as the development of new technologies are gaining interest, such as proteolysis-targeting chimeras for MDM2 degradation. Other approaches are taking advantage of the progress made in immune-based therapies for cancer. In this Review, we present these ongoing clinical trials and emerging approaches to re-evaluate the current state of knowledge of p53-based therapies for cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53 , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mutação
2.
Cancer Discov ; 13(5): 1043-1045, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37139722

RESUMO

SUMMARY: In this issue of Cancer Discovery, Adams and colleagues present the discovery of a potent PROTAC, MDM2 degrader, which activates wild-type p53 leading to cancer cell death. Importantly, in a number of in vitro and in vivo experiments, the authors show that the depletion of MDM2 by PROTAC kills p53-mutant or p53-null cancer cells. See related article by Adams et al., p. 1210 (5).


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
3.
Br J Cancer ; 127(11): 2060-2071, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36138076

RESUMO

BACKGROUND: p53 mutants contribute to the chronic inflammatory tumour microenvironment (TME). In this study, we address the mechanism of how p53 mutants lead to chronic inflammation in tumours and how to transform it to restore cancer immune surveillance. METHODS: Our analysis of RNA-seq data from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) project revealed that mutant p53 (mtp53) cancers correlated with chronic inflammation. We used cell-based assays and a mouse model to discover a novel gain of function of mtp53 and the effect of the mtp53 reactivating compound APR-246 on the anti-tumour immune response. RESULTS: We found that tumour samples from patients with breast carcinoma carrying mtp53 showed elevated Interferon (IFN) signalling, Tumour Inflammation Signature (TIS) score and infiltration of CD8+ T cells compared to wild type p53 (wtp53) tumours. We showed that the expression of IFN and immune checkpoints were elevated in tumour cells in a mtp53-dependent manner, suggesting a novel gain of function. Restoration of wt function to mtp53 by APR-246 induced the expression of endogenous retroviruses, IFN signalling and repressed immune checkpoints. Moreover, APR-246 promoted CD4+ T cells infiltration and IFN signalling and prevented CD8+ T cells exhaustion within the TME in vivo. CONCLUSIONS: Breast carcinomas with mtp53 displayed enhanced inflammation. APR-246 boosted the interferon response or represses immune checkpoints in p53 mutant tumour cells, and restores cancer immune surveillance in vivo.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Mutação com Ganho de Função , Neoplasias/genética , Interferons/genética , Interferons/metabolismo , Inflamação/genética , Microambiente Tumoral/genética
4.
Mol Cancer Ther ; 21(10): 1524-1534, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35877475

RESUMO

Reactivation of p53 tumor-suppressor function by small molecules is an attractive strategy to defeat cancer. A potent p53-reactivating molecule RITA, which triggers p53-dependent apoptosis in human tumor cells in vitro and in vivo, exhibits p53-independent cytotoxicity due to modifications by detoxification enzyme Sulfotransferase 1A1 (SULT1A1), producing a reactive carbocation. Several synthetic modifications to RITA's heterocyclic scaffold lead to higher energy barriers for carbocation formation. In this study, we addressed the question whether RITA analogs NSC777196 and NSC782846 can induce p53-dependent apoptosis without SULT1A1-dependent DNA damage. We found that RITA analog NSC782846, but not NSC777196, induced p53-regulated genes, targeted oncogene addiction, and killed cancer cells upon p53 reactivation, but without induction of DNA damage and inhibition RNA pol II. Our results might demonstrate a method for designing more specific and potent RITA analogs to accelerate translation of p53-targeting compounds from laboratory bench to clinic.


Assuntos
RNA Polimerase II , Proteína Supressora de Tumor p53 , Apoptose , Linhagem Celular Tumoral , Dano ao DNA , Furanos/farmacologia , Humanos , Sulfotransferases/genética , Proteína Supressora de Tumor p53/genética
5.
Oncogene ; 41(15): 2173-2186, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35197571

RESUMO

Increasing evidence highlights the role of bacteria in the physiopathology of cancer. However, the underlying molecular mechanisms remains poorly understood. Several cancer-associated bacteria have been shown to produce toxins which interfere with the host defense against tumorigenesis. Here, we show that lipopolysaccharides from Klebsiella pneumoniae and other Enterobacteria strongly inhibit the host tumor suppressor p53 pathway through a novel mechanism of p53 regulation. We found that lipopolysaccharides destabilize TP53 mRNA through a TLR4-NF-κB-mediated inhibition of the RNA-binding factor Wig-1. Importantly, we show that K. pneumoniae disables two major tumor barriers, oncogene-induced DNA damage signaling and senescence, by impairing p53 transcriptional activity upon DNA damage and oncogenic stress. Furthermore, we found an inverse correlation between the levels of TLR4 and p53 mutation in colorectal tumors. Hence, our data suggest that the repression of p53 by Enterobacteria via TLR4 alleviates the selection pressure for p53 oncogenic mutations and shapes the genomic evolution of cancer.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , RNA Mensageiro/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteína Supressora de Tumor p53/metabolismo
6.
Cancers (Basel) ; 13(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638334

RESUMO

p53 is a major tumor suppressor that integrates diverse types of signaling in mammalian cells. In response to a broad range of intra- or extra-cellular stimuli, p53 controls the expression of multiple target genes and elicits a vast repertoire of biological responses. The exact code by which p53 integrates the various stresses and translates them into an appropriate transcriptional response is still obscure. p53 is tightly regulated at multiple levels, leading to a wide diversity in p53 complexes on its target promoters and providing adaptability to its transcriptional program. As p53-targeted therapies are making their way into clinics, we need to understand how to direct p53 towards the desired outcome (i.e., cell death, senescence or other) selectively in cancer cells without affecting normal tissues or the immune system. While the core p53 transcriptional program has been proposed, the mechanisms conferring a cell type- and stimuli-dependent transcriptional outcome by p53 require further investigations. The mechanism by which p53 localizes to repressed promoters and manages its co-repressor interactions is controversial and remains an important gap in our understanding of the p53 cistrome. We hope that our review of the recent literature will help to stimulate the appreciation and investigation of largely unexplored p53-mediated repression.

7.
Breast Cancer Res ; 22(1): 80, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727562

RESUMO

BACKGROUND: The estrogen receptor (ER)-positive breast cancer represents over 80% of all breast cancer cases. Even though adjuvant hormone therapy with tamoxifen (TMX) is saving lives of patients with ER-positive breast cancer, the acquired resistance to TMX anti-estrogen therapy is the main hurdle for successful TMX therapy. Here we address the mechanism for TMX resistance and explore the ways to eradicate TMX-resistant breast cancer in both in vitro and ex vivo experiments. EXPERIMENTAL DESIGN: To identify compounds able to overcome TMX resistance, we used short-term and long-term viability assays in cancer cells in vitro and in patient samples in 3D ex vivo, analysis of gene expression profiles and cell line pharmacology database, shRNA screen, CRISPR-Cas9 genome editing, real-time PCR, immunofluorescent analysis, western blot, measurement of oxidative stress using flow cytometry, and thioredoxin reductase 1 enzymatic activity. RESULTS: Here, for the first time, we provide an ample evidence that a high level of the detoxifying enzyme SULT1A1 confers resistance to TMX therapy in both in vitro and ex vivo models and correlates with TMX resistance in metastatic samples in relapsed patients. Based on the data from different approaches, we identified three anticancer compounds, RITA (Reactivation of p53 and Induction of Tumor cell Apoptosis), aminoflavone (AF), and oncrasin-1 (ONC-1), whose tumor cell inhibition activity is dependent on SULT1A1. We discovered thioredoxin reductase 1 (TrxR1, encoded by TXNRD1) as a target of bio-activated RITA, AF, and ONC-1. SULT1A1 depletion prevented the inhibition of TrxR1, induction of oxidative stress, DNA damage signaling, and apoptosis triggered by the compounds. Notably, RITA efficiently suppressed TMX-unresponsive patient-derived breast cancer cells ex vivo. CONCLUSION: We have identified a mechanism of resistance to TMX via hyperactivated SULT1A1, which renders selective vulnerability to anticancer compounds RITA, AF, and ONC-1, and provide a rationale for a new combination therapy to overcome TMX resistance in breast cancer patients. Our novel findings may provide a strategy to circumvent TMX resistance and suggest that this approach could be developed further for the benefit of relapsed breast cancer patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Tamoxifeno/farmacologia , Antineoplásicos Hormonais/química , Antineoplásicos Hormonais/farmacologia , Apoptose , Arilsulfotransferase/genética , Arilsulfotransferase/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Tamoxifeno/química , Células Tumorais Cultivadas
8.
Cancer Res ; 80(7): 1538-1550, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32019870

RESUMO

Identification of the molecular mechanism of action (MoA) of bioactive compounds is a crucial step for drug development but remains a challenging task despite recent advances in technology. In this study, we applied multidimensional proteomics, sensitivity correlation analysis, and transcriptomics to identify a common MoA for the anticancer compounds RITA, aminoflavone (AF), and oncrasin-1 (Onc-1). Global thermal proteome profiling revealed that the three compounds target mRNA processing and transcription, thereby attacking a cancer vulnerability, transcriptional addiction. This led to the preferential loss of expression of oncogenes involved in PDGF, EGFR, VEGF, insulin/IGF/MAPKK, FGF, Hedgehog, TGFß, and PI3K signaling pathways. Increased reactive oxygen species level in cancer cells was a prerequisite for targeting the mRNA transcription machinery, thus conferring cancer selectivity to these compounds. Furthermore, DNA repair factors involved in homologous recombination were among the most prominently repressed proteins. In cancer patient samples, RITA, AF, and Onc-1 sensitized to poly(ADP-ribose) polymerase inhibitors both in vitro and ex vivo These findings might pave a way for new synthetic lethal combination therapies.Significance: These findings highlight agents that target transcriptional addiction in cancer cells and suggest combination treatments that target RNA processing and DNA repair pathways simultaneously as effective cancer therapies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Oncogenes/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Transcrição Gênica/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Feminino , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Furanos/farmacologia , Furanos/uso terapêutico , Perfilação da Expressão Gênica , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteoma/genética , Proteômica/métodos , Reparo de DNA por Recombinação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Mutações Sintéticas Letais/efeitos dos fármacos
9.
Sci Rep ; 10(1): 1049, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974452

RESUMO

Pifithrin-α (PFT-α) is a small molecule which has been widely used as a specific inhibitor of p53 transcription activity. However, its molecular mechanism of action remains unclear. PFT-α has also been described to display potent p53-independent activity in cells. In this study, we addressed the mechanism of action of PFT-α. We found that PFT-α failed to prevent the effects of Mdm2 inhibitor Nutlin-3 on cell cycle and apoptosis in several cancer cell lines. However, PFT-α rescued normal primary fibroblasts from growth inhibition by Nutlin-3. PFT-α displayed a very limited effect on p53-dependent transcription upon its activation by Nutlin-3. Moreover, PFT-α inhibitory effect on transcription was highly dependent on the nature of the p53 target gene. PFT-α attenuated post-translational modifications of p53 without affecting total p53 protein level. Finally, we found that PFT-α can decrease the level of intracellular reactive oxygen species through activation of an aryl hydrocarbon receptor (AHR)-Nrf2 axis in a p53-independent manner. In conclusion, PFT-α inhibits only some aspects of p53 function, therefore it should be used with extreme caution to study p53-dependent processes.


Assuntos
Benzotiazóis/farmacologia , Imidazóis/metabolismo , Piperazinas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Tolueno/análogos & derivados , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Humanos , Células MCF-7 , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Tolueno/farmacologia , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Cell Death Dis ; 10(11): 845, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699971

RESUMO

Tumor protein 53 (p53, encoded by the TP53 gene) is a key tumor suppressor regulating cell fates in response to internal and external stresses. As TP53 is mutated or silenced in a majority of tumors, reactivation of p53 by small molecules represents a promising strategy in cancer therapeutics. One such agent is RITA (reactivation of p53 and induction of tumor cell apoptosis), which restores p53 expression in cells with hyperactive HDM2 and induces apoptosis. Yet, mechanisms underlying the anticancer activity of RITA are incompletely understood. Here we show that RITA suppresses mRNA translation independently of p53 by inducing eIF2α phosphorylation. Surprisingly, reactivation of p53 following RITA treatment is critically dependent on eIF2α phosphorylation. Moreover, inhibition of eIF2α phosphorylation attenuates pro-apoptotic and anti-neoplastic effects of RITA, while inducing phosphorylation of eIF2α enhances the anticancer activity of RITA. Collectively, these findings demonstrate that the translational machinery plays a major role in determining the antineoplastic activity of RITA, and suggest that combining p53 activators and translation modulators may be beneficial.


Assuntos
Neoplasias da Mama/prevenção & controle , Proteínas de Ligação a DNA/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/genética , Fator de Iniciação 2 em Eucariotos/genética , Feminino , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Fosforilação , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , eIF-2 Quinase/metabolismo
11.
J Mol Cell Biol ; 11(7): 586-599, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31310659

RESUMO

p53 is the major tumor suppressor and the most frequently inactivated gene in cancer. p53 could be disabled either by mutations or by upstream negative regulators, including, but not limited to MDM2 and MDMX. p53 activity is required for the prevention as well as for the eradication of cancers. Restoration of p53 activity in mouse models leads to the suppression of established tumors of different origin. These findings provide a strong support to the anti-cancer strategy aimed for p53 reactivation. In this review, we summarize recent progress in the development of small molecules, which restore the tumor suppressor function of wild-type p53 and discuss their clinical advance. We discuss different aspects of p53-mediated response, which contribute to suppression of tumors, including non-canonical p53 activities, such as regulation of immune response. While targeting p53 inhibitors is a very promising approach, there are certain limitations and concerns that the intensive research and clinical evaluation of compounds will hopefully help to overcome.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias , Proteína Supressora de Tumor p53 , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Sci Rep ; 9(1): 2379, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787419

RESUMO

Despite the widening range of high-throughput platforms and exponential growth of generated data volume, the validation of biomarkers discovered from large-scale data remains a challenging field. In order to tackle cancer heterogeneity and comply with the data dimensionality, a number of network and pathway approaches were invented but rarely systematically applied to this task. We propose a new method, called NEAmarker, for finding sensitive and robust biomarkers at the pathway level. scores from network enrichment analysis transform the original space of altered genes into a lower-dimensional space of pathways. These dimensions are then correlated with phenotype variables. The method was first tested using in vitro data from three anti-cancer drug screens and then on clinical data of The Cancer Genome Atlas. It proved superior to the single-gene and alternative enrichment analyses in terms of (1) universal applicability to different data types with a possibility of cross-platform integration, (2) consistency of the discovered correlates between independent drug screens, and (3) ability to explain differential survival of treated patients. Our new screen of anti-cancer compounds validated the performance of multivariate models of drug sensitivity. The previously proposed methods of enrichment analysis could achieve comparable levels of performance in certain tests. However, only our method could discover predictors of both in vitro response and patient survival given administration of the same drug.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores/metabolismo , Biologia Computacional/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias/tratamento farmacológico , Linhagem Celular , Desenvolvimento de Medicamentos/métodos
13.
Sci Rep ; 8(1): 15320, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333499

RESUMO

Estimates of noble gas solubility in glasses and minerals are important to understand the origin of these gases, particularly xenon, in the atmosphere. However, technical difficulties and ambiguities in quantifying the dissolved gases introduce large uncertainties in the solubility estimates. We present here the use of transmission electron microscopy (TEM) with in-situ noble gas ion implantation as a non-equilibrium approach for noble gas solubility estimates. Using a suitable Xe equation of state and Monte-Carlo simulations of TEM images, a clear distinction between Xe filled precipitates and empty voids is made. Furthermore, implantation-induced changes in the solubility are estimated using molecular dynamics simulations. These studies allow us to evaluate the xenon solubility of irradiated and pristine silica glasses and monitor in-situ the diffusion-mediated dynamics between the precipitates and voids - otherwise impossible to capture. On exceeding the solubility limit, supercritical xenon precipitates, stable at least up to 1155 K, are formed. The results highlight the high capacity of silicates to store xenon and, predict higher solubility of radiogenic xenon due to the accompanying radiation damage.

14.
Inorg Chem ; 56(22): 13982-13990, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29087699

RESUMO

Pu(III), Pu(IV), and a higher oxidation state of Pu, likely Pu(VI), are for the first time characterized simultaneously present in a borosilicate glass using Pu M5 edge high energy resolution X-ray absorption near edge structure (HR-XANES) technique. We illustrate that the method can be very efficiently used to determine Pu oxidation states, which control the solubility limit of Pu in a glass matrix. HR-XANES results show that the addition of excess Si3N4 is not sufficient for complete reduction of Pu to Pu(III), which has a relatively high solubility limit (9-22 wt % Pu) due to its network-modifying behavior in glasses. We provide evidence that the initially added Pu(VI) might be partly preserved during vitrification at 1200/1400 °C in Ar atmosphere. Pu(VI) could be very advantageous for vitrification of Pu-rich wastes, since it might reach solubility limits of 40 wt % comparable to U(VI).

15.
Inorg Chem ; 56(3): 1558-1573, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28124561

RESUMO

Molybdenum solubility is a limiting factor to actinide loading in nuclear waste glasses, as it initiates the formation of water-soluble crystalline phases such as alkali molybdates. To increase waste loading efficiency, alternative glass ceramic structures are sought that prove resistant to internal radiation resulting from radioisotope decay. In this study, selective formation of water-durable CaMoO4 in a soda lime borosilicate is achieved by introducing up to 10 mol % MoO3 in a 1:1 ratio to CaO using a sintering process. The resulting homogeneously dispersed spherical CaMoO4 nanocrystallites were analyzed using electron microscopy, X-ray diffraction (XRD), Raman and electron paramagnetic resonance (EPR) spectroscopies prior to and post irradiation, which replicated internal ß-irradiation damage on an accelerated scale. Following 0.77 to 1.34 GGy of 2.5 MeV electron radiation CaMoO4 does not exhibit amorphization or significant transformation. Nor does irradiation induce glass-in-glass phase separation in the surrounding amorphous matrix, or the precipitation of other molybdates, thus proving that excess molybdenum can be successfully incorporated into a structure that it is resistant to ß-irradiation proportional to 1000 years of storage without water-soluble byproducts. The CaMoO4 crystallites do however exhibit a nonlinear Scherrer crystallite size pattern with dose, as determined by a Rietveld refinement of XRD patterns and an alteration in crystal quality as deduced by anisotropic peak changes in both XRD and Raman spectroscopy. Radiation-induced modifications in the CaMoO4 tetragonal unit cell occurred primarily along the c-axis indicating relaxation of stacked calcium polyhedra. Concurrently, a strong reduction of Mo6+ to Mo5+ during irradiation is observed by EPR, which is believed to enhance Ca mobility. These combined results are used to hypothesize a crystallite size alteration model based on a combination of relaxation and diffusion-based processes initiated by added energy from ß-impingement and second-order structural modifications induced by defect accumulation.

16.
Sci Rep ; 6: 25499, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27149700

RESUMO

Safe management of high level nuclear waste is a worldwide significant issue for which vitrification has been selected by many countries. There exists a crucial need for improving our understanding of the ageing of the glass under irradiation. While external irradiation by ions provides a rapid simulation of damage induced by alpha decays, short lived actinide doping is more representative of the reality. Here, we report radiological NMR experiments to compare the damage in International Simplified Glass (ISG) when irradiated by these two methods. In the 0.1 mole percent (244)Cm doped glass, accumulation of high alpha decay only shows small modifications of the local structure, in sharp contrast to heavy ion irradiation. These results reveal the ability of the alpha particle to partially repair the damage generated by the heavy recoil nuclei highlighting the radiation resistance of nuclear glass and the difficulty to accurately simulate its behaviour by single ion beam irradiations.

17.
Cancer Cell ; 26(6): 863-879, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25490449

RESUMO

Small noncoding miRNAs represent underexplored targets of genomic aberrations and emerging therapeutic targets. The 3q26.2 amplicon is among the most frequent genomic aberrations in multiple cancer lineages including ovarian and breast cancers. We demonstrate that hsa-miR-569 (hereafter designated as miR569), which is overexpressed in a subset of ovarian and breast cancers, at least in part due to the 3q26.2 amplicon, alters cell survival and proliferation. Downregulation of TP53INP1 expression by miR569 is required for the effects of miR569 on survival and proliferation. Targeting miR569 sensitizes ovarian and breast cancer cells overexpressing miR569 to cisplatin by increasing cell death both in vitro and in vivo. Thus targeting miR569 could potentially benefit patients with the 3q26.2 amplicon and subsequent miR569 elevation.


Assuntos
Neoplasias da Mama/genética , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico/metabolismo , MicroRNAs/metabolismo , Neoplasias Epiteliais e Glandulares/genética , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/genética , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromossomos Humanos Par 3 , Cisplatino/farmacologia , Feminino , Amplificação de Genes , Duplicação Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Neoplasias Experimentais , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia
18.
Mol Cell Oncol ; 1(3): e964044, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27308354

RESUMO

Oxidative stress-induced sumoylation of TP53INP1 (tumor protein p53-induced nuclear protein 1) is essential to enhance the TP53 response. Sumoylation of TP53INP1 on the K113 residue, which is mediated by protein inhibitor of activated STAT 3 (PIAS3) and chromobox homolog 4 (CBX4) and removed by SUMO1/sentrin specific peptidase (SENP1, 2 and 6), favors its interaction with TP53 in the nucleus and enhances TP53-induced gene expression.

19.
Am J Pathol ; 182(6): 1996-2004, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23578383

RESUMO

Tumor protein p53-induced nuclear protein 1 (TP53INP1) is involved in cell stress response. Its expression is lost at the pancreatic intraepithelial neoplasia 1b (PanIN1b)/PanIN2 stage of pancreatic carcinogenesis. Our objective was to determine whether TP53INP1 loss of expression contributes to pancreatic cancer formation in a conditional KrasG12D mouse model. We generated Kras-INP1KO mice using LSL-Kras(G12D/+);Pdx1-Cre(+/-) mice (Kras mice) and TP53INP1(-/-) mice. Analysis of pancreases during ageing shows that in the presence of activated Kras, TP53INP1 loss of expression accelerated PanIN formation and increased pancreatic injury and the number of high-grade lesions as compared with what occurs in Kras mice. Moreover, cystic lesions resembling intraductal papillary mucinous neoplasm (IPMN) were observed as early as 2 months of age. Remarkably, TP53INP1 is down-regulated in human IPMN. Activation of the small GTPase Rac1 shows that more oxidative stress is generated in Kras-INP1KO than in Kras mice pancreas despite elevated levels of the Nrf2 antioxidant regulator. We firmly establish the link between Kras-INP1KO pancreatic phenotype and oxidative stress with rescue of the phenotype by the antioxidant action of N-acetylcysteine. Our data provide in vivo functional demonstration that TP53INP1 deficiency accelerates progression of pancreatic cancer, underlining its role in the occurrence of IPMN and highlighting the importance of TP53INP1 in the control of oxidative status during development of pancreatic cancer.


Assuntos
Proteínas Nucleares/fisiologia , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Regulação para Baixo/fisiologia , Humanos , Metaplasia/genética , Metaplasia/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo
20.
Results Immunol ; 3: 51-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24600558

RESUMO

Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) plays an important role during cell stress response in synergy with the potent "genome-keeper" p53. In human, the gene encoding TP53INP1 is expressed at very high level in some pathological situations, such as inflammation and prostate cancer (PC). TP53INP1 overexpression in PC seems to be a worse prognostic factor, particularly predictive of biological cancer relapse, making TP53INP1 a relevant specific target for molecular therapy of Castration Resistant (CR) PC. In that context, detection of TP53INP1 in patient biological fluids is a promising diagnostic avenue. We report here successful development of a new Enzyme-Linked Immunosorbent Assay (ELISA) detecting TP53INP1, taking advantage of molecular tools (monoclonal antibodies (mAbs) and recombinant proteins) generated in the laboratory during the course of basic functional investigations devoted to TP53INP1. The ELISA principle is based on a sandwich immunoenzymatic system, TP53INP1 protein being trapped by a first specific mAb coated on microplate then recognized by a second specific mAb. This new assay allows specific detection of TP53INP1 in serum of several PC patients. This breakthrough paves the way towards investigation of a large cohort of patients and assessment of clinical applications of TP53INP1 dosage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...