Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 19281, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935746

RESUMO

Untargeted lipidomics has been increasingly adopted for hypothesis generation in a biological context or discovery of disease biomarkers. Most of the current liquid chromatography mass spectrometry (LC-MS) based untargeted methodologies utilize a data dependent acquisition (DDA) approach in pooled samples for identification and MS-only acquisition for semi-quantification in individual samples. In this study, we present for the first time an untargeted lipidomic workflow that makes use of the newly implemented Quadrupole Resolved All-Ions (Q-RAI) acquisition function on the Agilent 6546 quadrupole time-of-flight (Q-TOF) mass spectrometer to acquire MS2 spectra in data independent acquisition (DIA) mode. This is followed by data processing and analysis on MetaboKit, a software enabling DDA-based spectral library construction and extraction of MS1 and MS2 peak areas, for reproducible identification and quantification of lipids in DIA analysis. This workflow was tested on lipid extracts from human plasma and showed quantification at MS1 and MS2 levels comparable to multiple reaction monitoring (MRM) targeted analysis of the same samples. Analysis of serum from Ceramide Synthase 2 (CerS2) null mice using the Q-RAI DIA workflow identified 88 lipid species significantly different between CerS2 null and wild type mice, including well-characterized changes previously associated with this phenotype. Our results show the Q-RAI DIA as a reliable option to perform simultaneous identification and reproducible relative quantification of lipids in exploratory biological studies.


Assuntos
Lipidômica , Lipídeos , Humanos , Animais , Camundongos , Lipidômica/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Íons
3.
PLoS One ; 17(7): e0271675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35849604

RESUMO

The important membrane lipid, ceramide, is generated by a family of homologous enzymes, the ceramide synthases (CerSs), multi-spanning membrane proteins located in the endoplasmic reticulum. Six CerS isoforms exist in mammals with each using a subset of acyl-CoAs for (dihydro)ceramide synthesis. A number of mice have been generated in which one or other CerS has been genetically manipulated, including complete knock-outs, with each displaying phenotypes concomitant with the expression levels of the CerS in question and the presumed biological function of the ceramide species that it generates. We recently described a short C-terminal motif in the CerS which is involved in CerS dimer formation; deleting this motif had no effect on the ability of the CerS to synthesize ceramide in vitro. In the current study, we generated a CerS6 mouse using CRISPR-Cas9, in which the DDRSDIE motif was replaced by ADAAAIA. While levels of CerS6ADAAAIA expression were unaffected in the CerS6ADAAAIA mouse, and CerS6ADAAAIA was able to generate C16-ceramide in vitro, ceramide levels were significantly reduced in the CerS6ADAAAIA mouse, suggesting that replacing this motif affects an as-yet unknown mechanism of regulation of ceramide synthesis via the DDRSDIE motif in vivo. Crossing CerS6ADAAAIA mice with CerS5 null mice led to generation of viable mice in which C16-ceramide levels were reduced by up to 90%, suggesting that depletion of C16-ceramide levels is compensated for by other ceramide species with different acyl chain lengths.


Assuntos
Ceramidas , Esfingosina N-Aciltransferase/metabolismo , Acil Coenzima A/metabolismo , Animais , Ceramidas/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/genética , Camundongos , Oxirredutases/genética , Oxirredutases/metabolismo , Esfingosina N-Aciltransferase/genética
4.
Mol Ther ; 30(4): 1661-1674, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-34400330

RESUMO

Emerging clinical data show that three ceramide molecules, Cer d18:1/16:0, Cer d18:1/24:1, and Cer d18:1/24:0, are biomarkers of a fatal outcome in patients with cardiovascular disease. This finding raises basic questions about their metabolic origin, their contribution to disease pathogenesis, and the utility of targeting the underlying enzymatic machinery for treatment of cardiometabolic disorders. Here, we outline the development of a potent N-acetylgalactosamine-conjugated antisense oligonucleotide engineered to silence ceramide synthase 2 specifically in hepatocytes in vivo. We demonstrate that this compound reduces the ceramide synthase 2 mRNA level and that this translates into efficient lowering of protein expression and activity as well as Cer d18:1/24:1 and Cer d18:1/24:0 levels in liver. Intriguingly, we discover that the hepatocyte-specific antisense oligonucleotide also triggers a parallel modulation of blood plasma ceramides, revealing that the biomarkers predictive of cardiovascular death are governed by ceramide biosynthesis in hepatocytes. Our work showcases a generic therapeutic framework for targeting components of the ceramide enzymatic machinery to disentangle their roles in disease causality and to explore their utility for treatment of cardiometabolic disorders.


Assuntos
Doenças Cardiovasculares , Oligonucleotídeos Antissenso , Oxirredutases , Biomarcadores , Doenças Cardiovasculares/genética , Ceramidas , Inativação Gênica , Hepatócitos , Humanos , Oligonucleotídeos Antissenso/genética , Oxirredutases/antagonistas & inibidores , Plasma
5.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800208

RESUMO

(1) Background: six mammalian ceramide synthases (CerS1-6) determine the acyl chain length of sphingolipids (SLs). Although ceramide levels are increased in murine allergic asthma models and in asthmatic patients, the precise role of SLs with specific chain lengths is still unclear. The role of CerS2, which mainly synthesizes C22-C24 ceramides, was investigated in immune responses elicited by airway inflammation using CerS2 null mice. (2) Methods: asthma was induced in wild type (WT) and CerS2 null mice with ovalbumin (OVA), and inflammatory cytokines and CD4 (cluster of differentiation 4)+ T helper (Th) cell profiles were analyzed. We also compared the functional capacity of CD4+ T cells isolated from WT and CerS2 null mice. (3) Results: CerS2 null mice exhibited milder symptoms and lower Th2 responses than WT mice after OVA exposure. CerS2 null CD4+ T cells showed impaired Th2 and increased Th17 responses with concomitant higher T cell receptor (TCR) signal strength after TCR stimulation. Notably, increased Th17 responses of CerS2 null CD4+ T cells appeared only in TCR-mediated, but not in TCR-independent, treatment. (4) Conclusions: altered Th2/Th17 immune response with higher TCR signal strength was observed in CerS2 null CD4+ T cells upon TCR stimulation. CerS2 and very-long chain SLs may be therapeutic targets for Th2-related diseases such as asthma.


Assuntos
Asma/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Esfingosina N-Aciltransferase/deficiência , Células Th17/imunologia , Células Th2/imunologia , Animais , Asma/induzido quimicamente , Asma/genética , Asma/patologia , Camundongos , Camundongos Knockout , Ovalbumina/toxicidade , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/genética , Esfingosina N-Aciltransferase/imunologia , Células Th17/patologia , Células Th2/patologia
6.
Prog Neurobiol ; 197: 101939, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33152398

RESUMO

Gaucher disease (GD) is currently the focus of considerable attention due primarily to the association between the gene that causes GD (GBA) and Parkinson's disease. Mouse models exist for the systemic (type 1) and for the acute neuronopathic forms (type 2) of GD. Here we report the generation of a mouse that phenotypically models chronic neuronopathic type 3 GD. Gba-/-;Gbatg mice, which contain a Gba transgene regulated by doxycycline, accumulate moderate levels of the offending substrate in GD, glucosylceramide, and live for up to 10 months, i.e. significantly longer than mice which model type 2 GD. Gba-/-;Gbatg mice display behavioral abnormalities at ∼4 months, which deteriorate with age, along with significant neuropathology including loss of Purkinje neurons. Gene expression is altered in the brain and in isolated microglia, although the changes in gene expression are less extensive than in mice modeling type 2 disease. Finally, bone deformities are consistent with the Gba-/-;Gbatg mice being a genuine type 3 GD model. Together, the Gba-/-;Gbatg mice share pathological pathways with acute neuronopathic GD mice but also display differences that might help understand the distinct disease course and progression of type 2 and 3 patients.


Assuntos
Doença de Gaucher , Células de Purkinje , Animais , Encéfalo , Modelos Animais de Doenças , Doença de Gaucher/genética , Glucosilceramidase/genética , Humanos , Camundongos
7.
Exp Mol Med ; 51(11): 1-16, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676768

RESUMO

The endoplasmic reticulum (ER) is not only important for protein synthesis and folding but is also crucial for lipid synthesis and metabolism. In the current study, we demonstrate an important role of ceramide synthases (CerS) in ER stress and NAFLD progression. Ceramide is important in sphingolipid metabolism, and its acyl chain length is determined by a family of six CerS in mammals. CerS2 generates C22-C24 ceramides, and CerS5 or CerS6 produces C16 ceramide. To gain insight into the role of CerS in NAFLD, we used a high-fat diet (HFD)-induced NAFLD mouse model. Decreased levels of CerS2 and increased levels of CerS6 were observed in the steatotic livers of mice fed a HFD. In vitro experiments with Hep3B cells indicated the protective role of CerS2 and the detrimental role of CerS6 in the ER stress response induced by palmitate treatment. In particular, CerS6 overexpression increased sterol regulatory element-binding protein-1 (SREBP-1) cleavage with decreased levels of INSIG-1, leading to increased lipogenesis. Blocking ER stress abrogated the detrimental effects of CerS6 on palmitate-induced SREBP-1 cleavage. In accordance with the protective role of CerS2 in the palmitate-induced ER stress response, CerS2 knockdown enhanced ER stress and SREBP-1 cleavage, and CerS2 heterozygote livers exhibited a stronger ER stress response and higher triglyceride levels following HFD. Finally, treatment with a low dose of bortezomib increased hepatic CerS2 expression and protected the development of NAFLD following HFD. These results indicate that CerS and its derivatives impact hepatic ER stress and lipogenesis differently and might be therapeutic targets for NAFLD.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Fígado/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Cromatografia em Camada Fina , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Esfingosina N-Aciltransferase/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
8.
PLoS Biol ; 17(3): e3000169, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30822302

RESUMO

CD1d-restricted invariant natural killer T (iNKT) cells represent a heterogeneous population of lipid-reactive T cells that are involved in many immune responses, mediated through T-cell receptor (TCR)-dependent and/or independent activation. Although numerous microbial lipid antigens (Ags) have been identified, several lines of evidence have suggested the existence of relevant Ags of endogenous origin. However, the identification of their precise nature as well as the molecular mechanisms involved in their generation are still highly controversial and ill defined. Here, we identified two mammalian gangliosides-namely monosialoganglioside GM3 and disialoganglioside GD3-as endogenous activators for mouse iNKT cells. These glycosphingolipids are found in Toll-like receptor-stimulated dendritic cells (DC) as several species varying in their N-acyl fatty chain composition. Interestingly, their ability to activate iNKT cells is highly dependent on the ceramide backbone structure. Thus, both synthetic GM3 and GD3 comprising a d18:1-C24:1 ceramide backbone were able to activate iNKT cells in a CD1d-dependent manner. GM3 and GD3 are not directly recognized by the iNKT TCR and required the Ag presenting cell intracellular machinery to reveal their antigenicity. We propose a new concept in which iNKT cells can rapidly respond to pre-existing self-molecules after stress-induced structural changes in CD1d-expressing cells. Moreover, these gangliosides conferred partial protection in the context of bacterial infection. Thus, this report identified new biologically relevant lipid self-Ags for iNKT cells.


Assuntos
Ceramidas/metabolismo , Gangliosídeos/metabolismo , Células T Matadoras Naturais/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Antígenos CD1d/metabolismo , Células da Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Gangliosídeo G(M3)/metabolismo , Glicoesfingolipídeos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
9.
FASEB J ; 32(4): 1880-1890, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29196503

RESUMO

The mechanisms by which lung structural cells survive toxic exposures to cigarette smoke (CS) are not well defined but may involve proper disposal of damaged mitochondria by macro-autophagy (mitophagy), processes that may be influenced by pro-apoptotic ceramide (Cer) or its precursor dihydroceramide (DHC). Human lung epithelial and endothelial cells exposed to CS exhibited mitochondrial damage, signaled by phosphatase and tensin homolog-induced putative kinase 1 (PINK1) phosphorylation, autophagy, and necroptosis. Although cells responded to CS by rapid inhibition of DHC desaturase, which elevated DHC levels, palmitoyl (C16)-Cer also increased in CS-exposed cells. Whereas DHC augmentation triggered autophagy without cell death, the exogenous administration of C16-Cer was sufficient to trigger necroptosis. Inhibition of Cer-generating acid sphingomyelinase reduced both CS-induced PINK1 phosphorylation and necroptosis. When exposed to CS, Pink1-deficient ( Pink1-/-) mice, which are protected from airspace enlargement compared with wild-type littermates, had blunted C16-Cer elevations and less lung necroptosis. CS-exposed Pink1-/- mice also exhibited significantly increased levels of lignoceroyl (C24)-DHC, along with increased expression of Cer synthase 2 ( CerS2), the enzyme responsible for its production. This suggested that a combination of high C24-DHC and low C16-Cer levels might protect against CS-induced necroptosis. Indeed, CerS2-/- mice, which lack C24-DHC at the expense of increased C16-Cer, were more susceptible to CS, developing airspace enlargement following only 1 month of exposure. These results implicate DHCs, in particular, C24-DHC, as protective against CS toxicity by enhancing autophagy, whereas C16-Cer accumulation contributes to mitochondrial damage and PINK1-mediated necroptosis, which may be amplified by the inhibition of C24-DHC-producing CerS2.-Mizumura, K., Justice, M. J., Schweitzer, K. S., Krishnan, S., Bronova, I., Berdyshev, E. V., Hubbard, W. C., Pewzner-Jung, Y., Futerman, A. H., Choi, A. M. K., Petrache, I. Sphingolipid regulation of lung epithelial cell mitophagy and necroptosis during cigarette smoke exposure.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Fumar Cigarros/efeitos adversos , Mitofagia , Esfingolipídeos/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Células Epiteliais Alveolares/metabolismo , Morte Celular , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo
10.
Front Immunol ; 8: 1386, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163475

RESUMO

The role of sphingolipids (SLs) in the immune system has come under increasing scrutiny recently due to the emerging contributions that these important membrane components play in regulating a variety of immunological processes. The acyl chain length of SLs appears particularly critical in determining SL function. Here, we show a role for very-long acyl chain SLs (VLC-SLs) in invariant natural killer T (iNKT) cell maturation in the thymus and homeostasis in the liver. Ceramide synthase 2-null mice, which lack VLC-SLs, were susceptible to a hepatotropic strain of lymphocytic choriomeningitis virus, which is due to a reduction in the number of iNKT cells. Bone marrow chimera experiments indicated that hematopoietic-derived VLC-SLs are essential for maturation of iNKT cells in the thymus, whereas parenchymal-derived VLC-SLs are crucial for iNKT cell survival and maintenance in the liver. Our findings suggest a critical role for VLC-SL in iNKT cell physiology.

11.
J Cell Mol Med ; 21(12): 3565-3578, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28699686

RESUMO

Ceramides mediate crucial cellular processes including cell death and inflammation and have recently been implicated in inflammatory bowel disease. Ceramides consist of a sphingoid long-chain base to which fatty acids of various length can be attached. We now investigate the effect of alerting the ceramide acyl chain length on a mouse model of colitis. Ceramide synthase (CerS) 2 null mice, which lack very-long acyl chain ceramides with concomitant increase of long chain bases and C16-ceramides, were more susceptible to dextran sodium sulphate-induced colitis, and their survival rate was markedly decreased compared with that of wild-type littermates. Using mixed bone-marrow chimeric mice, we showed that the host environment is primarily responsible for intestinal barrier dysfunction and increased intestinal permeability. In the colon of CerS2 null mice, the expression of junctional adhesion molecule-A was markedly decreased and the phosphorylation of myosin light chain 2 was increased. In vitro experiments using Caco-2 cells also confirmed an important role of CerS2 in maintaining epithelial barrier function; CerS2-knockdown via CRISPR-Cas9 technology impaired barrier function. In vivo myriocin administration, which normalized long-chain bases and C16-ceramides of the colon of CerS2 null mice, increased intestinal permeability as measured by serum FITC-dextran levels, indicating that altered SLs including deficiency of very-long-chain ceramides are critical for epithelial barrier function. In conclusion, deficiency of CerS2 influences intestinal barrier function and the severity of experimental colitis and may represent a potential mechanism for inflammatory bowel disease pathogenesis.


Assuntos
Ceramidas/deficiência , Colite/metabolismo , Colo/metabolismo , Esfingosina N-Aciltransferase/genética , Animais , Sistemas CRISPR-Cas , Células CACO-2 , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/mortalidade , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Ácidos Graxos Monoinsaturados/farmacologia , Edição de Genes , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Permeabilidade , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Esfingosina N-Aciltransferase/deficiência , Análise de Sobrevida
12.
J Cell Sci ; 130(8): 1486-1493, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28280117

RESUMO

Sphingolipids modulate clathrin-mediated endocytosis (CME) by altering the biophysical properties of membranes. We now examine CME in astrocytes cultured from ceramide synthase 2 (CerS2) null mice, which have an altered sphingolipid acyl chain composition. The rate of endocytosis of low-density lipoprotein and transferrin, which are internalized via CME, was reduced in CerS2 null astrocytes, although the rate of caveolin-mediated endocytosis was unaltered. Levels of clathrin heavy chain were increased, which was due to decreased levels of Hsc70 (also known as HSPA8), a protein involved in clathrin uncoating. Hsc70 levels were decreased because of lower levels of binding of Sp1 to position -68 in the Hsc70 promoter. Levels of Sp1 were downregulated due to oxidative stress, which was elevated fourfold in CerS2 null astrocytes. Furthermore, induction of oxidative stress in wild-type astrocytes decreased the rate of CME, whereas amelioration of oxidative stress in CerS2 null astrocytes reversed the decrease. Our data are consistent with the notion that sphingolipids not only change membrane biophysical properties but also that changes in their composition can result in downstream effects that indirectly impinge upon a number of cellular pathways, such as CME.


Assuntos
Astrócitos/fisiologia , Ceramidas/metabolismo , Endocitose , Fígado/fisiologia , Estresse Oxidativo/imunologia , Esfingolipídeos/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Ceramidas/química , Clatrina/metabolismo , Endocitose/genética , Camundongos , Camundongos Knockout , Estresse Oxidativo/genética , Engenharia de Proteínas , Transdução de Sinais , Esfingosina N-Aciltransferase/genética
13.
Am J Pathol ; 187(1): 122-133, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27842214

RESUMO

Sortilin, a member of the vacuolar protein sorting 10 domain receptor family, traffics newly synthesized proteins from the trans-Golgi network to secretory pathways, endosomes, and cell surface. Sortilin-trafficked molecules, including IL-6 and acid sphingomyelinase (aSMase), mediate cholangiocyte proliferation and liver inflammation, hepatic stellate cell activation, hepatocyte apoptosis, and fibrosis. Based on these sortilin-regulated functions, we investigated its role in biliary damage leading to hepatocellular injury and fibrosis. Sortilin-/- mice displayed impaired inflammation and ductular reaction 3 days after bile duct ligation (BDL), as demonstrated by reduced cholangiocyte proliferation and activation and reduced serum IL-6. Interestingly, liver fibrosis was reduced in Sortilin-/- mice after both BDL and carbon tetrachloride treatment, in line with attenuated in vitro activation of Sortilin-/- hepatic stellate cells. Sortilin-/- hepatic aSMase activity was reduced in the BDL and carbon tetrachloride models and accompanied by reduced in vivo hepatocyte apoptosis. In addition, wild type (WT), but not Sortilin-/- hepatocytes, had increased aSMase-dependent susceptibility to bile acid-induced apoptosis in vitro. Mechanistically, short-term IL-6 neutralization in bile duct-ligated WT mice decreased hepatic inflammation and reactive cholangiocyte-derived cytokines and chemokines, without affecting fibrosis, whereas pharmacological inhibition of aSMase activity was not sufficient to attenuate hepatic fibrosis. Only combined IL-6 and aSMase inhibition significantly reduced fibrosis in bile duct-ligated WT mice. We conclude that sortilin regulates cholestatic liver damage and fibrosis via effects on both aSMase activity and serum IL-6.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/deficiência , Apoptose , Ductos Biliares/patologia , Colestase/complicações , Hepatócitos/patologia , Cirrose Hepática/patologia , Fígado/lesões , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Proliferação de Células , Quimiocinas/metabolismo , Colestase/patologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Ligadura , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Testes de Neutralização , Fenótipo , Esfingomielina Fosfodiesterase/metabolismo
14.
Aging Cell ; 15(5): 801-10, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27363720

RESUMO

Endothelial oxidative stress develops with aging and reactive oxygen species impair endothelium-dependent relaxation (EDR) by decreasing nitric oxide (NO) availability. Endothelial KCa 3.1, which contributes to EDR, is upregulated by H2 O2 . We investigated whether KCa 3.1 upregulation compensates for diminished EDR to NO during aging-related oxidative stress. Previous studies identified that the levels of ceramide synthase 5 (CerS5), sphingosine, and sphingosine 1-phosphate were increased in aged wild-type and CerS2 mice. In primary mouse aortic endothelial cells (MAECs) from aged wild-type and CerS2 null mice, superoxide dismutase (SOD) was upregulated, and catalase and glutathione peroxidase 1 (GPX1) were downregulated, when compared to MAECs from young and age-matched wild-type mice. Increased H2 O2 levels induced Fyn and extracellular signal-regulated kinases (ERKs) phosphorylation and KCa 3.1 upregulation. Catalase/GPX1 double knockout (catalase(-/-) /GPX1(-/-) ) upregulated KCa 3.1 in MAECs. NO production was decreased in aged wild-type, CerS2 null, and catalase(-/-) /GPX1(-/-) MAECs. However, KCa 3.1 activation-induced, N(G) -nitro-l-arginine-, and indomethacin-resistant EDR was increased without a change in acetylcholine-induced EDR in aortic rings from aged wild-type, CerS2 null, and catalase(-/-) /GPX1(-/-) mice. CerS5 transfection or exogenous application of sphingosine or sphingosine 1-phosphate induced similar changes in levels of the antioxidant enzymes and upregulated KCa 3.1. Our findings suggest that, during aging-related oxidative stress, SOD upregulation and downregulation of catalase and GPX1, which occur upon altering the sphingolipid composition or acyl chain length, generate H2 O2 and thereby upregulate KCa 3.1 expression and function via a H2 O2 /Fyn-mediated pathway. Altogether, enhanced KCa 3.1 activity may compensate for decreased NO signaling during vascular aging.


Assuntos
Envelhecimento/fisiologia , Endotélio Vascular/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Regulação para Cima , Vasodilatação , Envelhecimento/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Aorta/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peróxido de Hidrogênio/metabolismo , Indometacina/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos Knockout , Modelos Biológicos , Nitroarginina/farmacologia , Oxirredutases/deficiência , Oxirredutases/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Esfingolipídeos/metabolismo , Regulação para Cima/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
15.
Aging Cell ; 14(6): 982-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26288989

RESUMO

K(Ca) 1.1 regulates smooth muscle contractility by modulating membrane potential, and age-associated changes in K(Ca) 1.1 expression may contribute to the development of motility disorders of the gastrointestinal tract. Sphingolipids (SLs) are important structural components of cellular membranes whose altered composition may affect K(Ca) 1.1 expression. Thus, in this study, we examined whether altered SL composition due to aging may affect the contractility of gastric smooth muscle (GSM). We studied changes in ceramide synthases (CerS) and SL levels in the GSM of mice of varying ages and compared them with those in young CerS2-null mice. The levels of C16- and C18-ceramides, sphinganine, sphingosine, and sphingosine 1-phosphate were increased, and levels of C22, C24:1 and C24 ceramides were decreased in the GSM of both aged wild-type and young CerS2-null mice. The altered SL composition upregulated K(Ca) 1.1 and increased K(Ca) 1.1 currents, while no change was observed in K(Ca) 1.1 channel activity. The upregulation of KC a 1.1 impaired intracellular Ca²âºmobilization and decreased phosphorylated myosin light chain levels, causing GSM contractile dysfunction. Additionally, phosphoinositide 3-kinase, protein kinase Cζ , c-Jun N-terminal kinases, and nuclear factor kappa-B were found to be involved in K(Ca) 1.1 upregulation. Our findings suggest that age-associated changes in SL composition or CerS2 ablation upregulate K(Ca) 1.1 via the phosphoinositide 3-kinase/protein kinase Cζ /c-Jun N-terminal kinases/nuclear factor kappa-B-mediated pathway and impair Ca²âº mobilization, which thereby induces the contractile dysfunction of GSM. CerS2-null mice exhibited similar effects to aged wild-type mice; therefore, CerS2-null mouse models may be utilized for investigating the pathogenesis of aging-associated motility disorders.


Assuntos
Envelhecimento/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/biossíntese , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Esfingolipídeos/metabolismo , Animais , Células Cultivadas , Ceramidas/metabolismo , Mucosa Gástrica/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/fisiologia , Esfingosina N-Aciltransferase/genética , Estômago/patologia , Ativação Transcricional
16.
FEBS Lett ; 589(17): 2213-7, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26183206

RESUMO

Tumor necrosis factor α (TNFα) is an inflammatory cytokine that plays an intimate role in septic shock. Injection of high levels of lipopolysaccharide induces septic shock and death in mice within 30 h, whereas ceramide synthase 2 (CerS2) null mice, defective in the synthesis of very-long acyl chain ceramides, die within ∼10 h. The augmented rate of death of CerS2 null mice is due to elevated levels of TNFα secretion as a result of enhanced activity of TNFα-converting enzyme (TACE). We discuss the relationship between the sphingolipid acyl chain length and TACE activity and the relevance of this data to septic shock.


Assuntos
Proteínas ADAM/metabolismo , Choque Séptico/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína ADAM17 , Animais , Western Blotting , Células Cultivadas , Ceramidas/metabolismo , Expressão Gênica , Hepatócitos/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos Knockout , Microscopia Confocal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Choque Séptico/induzido quimicamente , Esfingolipídeos/metabolismo , Esfingosina N-Aciltransferase/genética , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética
17.
Endocr Relat Cancer ; 22(4): 623-32, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26113602

RESUMO

Pheochromocytoma (PCC) and paraganglioma are rare neuroendocrine tumors of the adrenal medulla and sympathetic and parasympathetic paraganglia, for which mutations in ∼15 disease-associated genes have been identified. We now document the role of an additional gene in mice, the ceramide synthase 2 (CerS2) gene. CerS2, one of six mammalian CerS, synthesizes ceramides with very-long (C22-C24) chains. The CerS2 null mouse has been well characterized and displays lesions in several organs including the liver, lung and the brain. We now demonstrate that changes in the sphingolipid acyl chain profile of the adrenal gland lead to the generation of adrenal medullary tumors. Histological analyses revealed that about half of the CerS2 null mice developed PCC by ∼13 months, and the rest showed signs of medullary hyperplasia. Norepinephrine and normetanephrine levels in the urine were elevated at 7 months of age consistent with the morphological abnormalities found at later ages. Accumulation of ceroid in the X-zone was observed as early as 2 months of age and as a consequence, older mice displayed elevated levels of lysosomal cathepsins, reduced proteasome activity and reduced activity of mitochondrial complex IV by 6 months of age. Together, these findings implicate an additional pathway that can lead to PCC formation, which involves alterations in the sphingolipid acyl chain length. Analysis of the role of sphingolipids in PCC may lead to further understanding of the mechanism by which PCC develops, and might implicate the sphingolipid pathway as a possible novel therapeutic target for this rare tumor.


Assuntos
Neoplasias das Glândulas Suprarrenais/genética , Feocromocitoma/genética , Esfingosina N-Aciltransferase/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/patologia , Neoplasias das Glândulas Suprarrenais/urina , Glândulas Suprarrenais/metabolismo , Animais , Catecolaminas/urina , Catepsinas/genética , Catepsinas/metabolismo , Feminino , Masculino , Camundongos Knockout , Mitocôndrias/metabolismo , Feocromocitoma/metabolismo , Feocromocitoma/patologia , Feocromocitoma/urina
18.
Brain Behav Immun ; 46: 280-92, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25697397

RESUMO

Ceramide synthases (CerS) synthesise ceramides of defined acyl chain lengths, which are thought to mediate cellular processes in a chain length-dependent manner. In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), we observed a significant elevation of CerS2 and its products, C24-ceramides, in CD11b(+) cells (monocytes and neutrophils) isolated from blood. This result correlates with the clinical finding that CerS2 mRNA expression and C24-ceramide levels were significantly increased by 2.2- and 1.5-fold, respectively, in white blood cells of MS patients. The increased CerS2 mRNA/C24-ceramide expression in neutrophils/monocytes seems to mediate pro-inflammatory effects, since a specific genetic deletion of CerS2 in blood cells or a total genetic deletion of CerS2 significantly delayed the onset of clinical symptoms, due to a reduced infiltration of immune cells, in particular neutrophils, into the central nervous system. CXCR2 chemokine receptors, expressed on neutrophils, promote the migration of neutrophils into the central nervous system, which is a prerequisite for the recruitment of further immune cells and the inflammatory process that leads to the development of MS. Interestingly, neutrophils isolated from CerS2 null EAE mice, as opposed to WT EAE mice, were characterised by significantly lower CXCR2 receptor mRNA expression resulting in their reduced migratory capacity towards CXCL2. Most importantly, G-CSF-induced CXCR2 expression was significantly reduced in CerS2 null neutrophils and their migratory capacity was significantly impaired. In conclusion, our data strongly indicate that G-CSF-induced CXCR2 expression is regulated in a CerS2-dependent manner and that CerS2 thereby promotes the migration of neutrophils, thus, contributing to inflammation and the development of EAE and MS.


Assuntos
Movimento Celular/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Neutrófilos/imunologia , Esfingosina N-Aciltransferase/metabolismo , Adulto , Animais , Movimento Celular/efeitos dos fármacos , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Fator Estimulador de Colônias de Granulócitos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Esfingosina N-Aciltransferase/genética , Adulto Jovem
19.
Biol Chem ; 396(6-7): 611-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25720061

RESUMO

Acid sphingomyelinase and ceramide have previously been shown to play a central role in infections with Neisseria gonorrhoeae, Staphylococcus aureus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella typhimurium, Escherichia coli, and Mycobacterium avium. Recent studies have extended the role of sphingolipids in bacterial infections and have demonstrated that ceramide and sphingosine are central to the defense of lungs against bacterial pathogens. Ceramide accumulates in the airway epithelium of cystic fibrosis and ceramide synthase 2 (CerS2)-deficient mice, which respond to the lack of very long chain (C22-C24-) ceramides with a profound compensatory increase of long chain (mainly C16-) ceramides. In contrast, sphingosine is present in healthy airways and is almost completely absent from diseased or deficient epithelial cells. Both sphingolipids are crucially involved in the high susceptibility to infection of cystic fibrosis and CerS2-deficient mice, as indicated by findings showing that the normalization of ceramide and sphingosine levels rescue these mice from acute infection with P. aeruginosa.


Assuntos
Infecções Bacterianas/metabolismo , Ceramidas/metabolismo , Pulmão/microbiologia , Esfingosina/metabolismo , Animais , Infecções Bacterianas/imunologia , Fibrose Cística/microbiologia , Humanos , Camundongos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia
20.
J Hepatol ; 62(1): 175-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25173968

RESUMO

BACKGROUND & AIMS: Sortilin traffics newly synthesized molecules from the trans-Golgi apparatus along secretory pathways to endosomes, lysosomes or to the cell surface. Sortilin trafficking of acid sphingomyelinase (aSMase) may regulate ceramide levels, a major modulator of insulin signalling. We therefore tested whether sortilin deficiency reduces hepatic and adipose tissue aSMase activity, improving insulin sensitivity in diet-induced obesity (DIO). METHODS: DIO in C57BL/6 (WT) and sortilin(-/-) mice was induced by high-fat diet feeding for 10 weeks. RESULTS: Sortilin(-/-) mice gained less body weight and less visceral fat, despite similar food intake compared to WT type mice and had enhanced glucose uptake in insulin tolerance tests, which was further corroborated by enhanced hepatic pAkt expression. Sortilin deficiency led to attenuated hepatic steatosis, reduced expression of genes involved in lipogenesis, ceramide synthesis and inflammatory cytokine production and reduced activity of ceramide synthase 5/6 (CerS5/6). Sortilin(-/-) mice had reduced hepatic aSMase activity under both steady-state and DIO. Likewise, sortilin(-/-) hepatocytes displayed hypersensitivity to insulin, due to enhanced insulin receptor downstream signalling. In adipose tissue, sortilin(-/-) mice exhibited lower expression of inflammatory cytokines and lower expression and activity of CerS5/6. As in liver, adipose tissue displayed increased insulin signalling, accompanied by attenuated aSMase activity. CONCLUSIONS: Sortilin deficiency induces a beneficial metabolic phenotype in liver and adipose tissue upon DIO, mediated in part by reduced aSMase activity.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Fígado Gorduroso/genética , Hepatócitos/metabolismo , Resistência à Insulina/fisiologia , Obesidade/complicações , RNA/genética , Proteínas Adaptadoras de Transporte Vesicular/biossíntese , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Animais , Western Blotting , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Hepatócitos/patologia , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...