Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33837152

RESUMO

Animal cytokinesis ends with the formation of a thin intercellular membrane bridge that connects the two newly formed sibling cells, which is ultimately resolved by abscission. While mitosis is completed within 15 min, the intercellular bridge can persist for hours, maintaining a physical connection between sibling cells and allowing exchange of cytosolic components. Although cell-cell communication is fundamental for development, the role of intercellular bridges during embryogenesis has not been fully elucidated. In this work, we characterized the spatiotemporal characteristics of the intercellular bridge during early zebrafish development. We found that abscission is delayed during the rapid division cycles that occur in the early embryo, giving rise to the formation of interconnected cell clusters. Abscission was accelerated when the embryo entered the midblastula transition (MBT) phase. Components of the ESCRT machinery, which drives abscission, were enriched at intercellular bridges post-MBT and, interfering with ESCRT function, extended abscission beyond MBT. Hallmark features of MBT, including transcription onset and cell shape modulations, were more similar in interconnected sibling cells compared to other neighboring cells. Collectively, our findings suggest that delayed abscission in the early embryo allows clusters of cells to coordinate their behavior during embryonic development.


Assuntos
Blástula/embriologia , Citocinese , Animais , Blástula/citologia , Blástula/metabolismo , Forma Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
2.
Bioinformatics ; 37(18): 2946-2954, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33760050

RESUMO

MOTIVATION: Understanding the mechanisms by which the zebrafish pectoral fin develops is expected to produce insights on how vertebrate limbs grow from a 2D cell layer to a 3D structure. Two mechanisms have been proposed to drive limb morphogenesis in tetrapods: a growth-based morphogenesis with a higher proliferation rate at the distal tip of the limb bud than at the proximal side, and directed cell behaviors that include elongation, division and migration in a non-random manner. Based on quantitative experimental biological data at the level of individual cells in the whole developing organ, we test the conditions for the dynamics of pectoral fin early morphogenesis. RESULTS: We found that during the development of the zebrafish pectoral fin, cells have a preferential elongation axis that gradually aligns along the proximodistal (PD) axis of the organ. Based on these quantitative observations, we build a center-based cell model enhanced with a polarity term and cell proliferation to simulate fin growth. Our simulations resulted in 3D fins similar in shape to the observed ones, suggesting that the existence of a preferential axis of cell polarization is essential to drive fin morphogenesis in zebrafish, as observed in the development of limbs in the mouse, but distal tip-based expansion is not. AVAILABILITYAND IMPLEMENTATION: Upon publication, biological data will be available at http://bioemergences.eu/modelingFin, and source code at https://github.com/guijoe/MaSoFin. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Nadadeiras de Animais , Peixe-Zebra , Animais , Camundongos , Simulação por Computador , Morfogênese , Proliferação de Células
3.
Aquat Toxicol ; 232: 105768, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33592501

RESUMO

In recent years, pollution of surface waters with xenobiotic compounds became an issue of concern in society and has been the object of numerous studies. Most of these xenobiotic compounds are man-made molecules and some of them are qualified as endocrine disrupting chemicals (EDCs) when they interfere with hormones actions. Several studies have investigated the teratogenic impacts of EDCs in vertebrates (including marine vertebrates). However, the impact of such EDCs on marine invertebrates is much debated and still largely obscure. In addition, DNA-altering genotoxicants can induce embryonic malformations. The goal of this study is to develop a reliable and effective test for assessing toxicity of chemicals using embryos of the ascidian (Phallusia mammillata) in order to find phenotypic signatures associated with xenobiotics. We evaluated embryonic malformations with high-content analysis of larval phenotypes by scoring several quantitative and qualitative morphometric endpoints on a single image of Phallusia tadpole larvae with semi-automated image analysis. Using this approach we screened different classes of toxicants including genotoxicants, known or suspected EDCs and nuclear receptors (NRs) ligands. The screen presented here reveals a specific phenotypic signature for ligands of retinoic acid receptor/retinoid X receptor. Analysis of larval morphology combined with DNA staining revealed that embryos with DNA aberrations displayed severe malformations affecting multiple aspects of embryonic development. In contrast EDCs exposure induced no or little DNA aberrations and affected mainly neural development. Therefore the ascidian embryo/larval assay presented here can allow to distinguish the type of teratogenicity induced by different classes of toxicants.

4.
Evol Dev ; 23(2): 72-85, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33355999

RESUMO

Many species in the tunicate family Molgulidae have independently lost their swimming larval form and instead develop as tailless, immotile larvae. These larvae do not develop structures that are essential for swimming such as the notochord, otolith, and tail muscles. However, little is known about neural development in these nonswimming larvae. Here, we studied the patterning of the Motor Ganglion (MG) of Molgula occulta, a nonswimming species. We found that spatial patterns of MG neuron regulators in this species are conserved, compared with species with swimming larvae, suggesting that the gene networks regulating their expression are intact despite the loss of swimming. However, expression of the key motor neuron regulatory gene Ebf (Collier/Olf/EBF) was reduced in the developing MG of M. occulta when compared with molgulid species with swimming larvae. This was corroborated by measuring allele-specific expression of Ebf in hybrid embryos from crosses of M. occulta with the swimming species M. oculata. Heterologous reporter construct assays in the model tunicate species Ciona robusta revealed a specific cis-regulatory sequence change that reduces expression of Ebf in the MG, but not in other cells. Taken together, these data suggest that MG neurons are still specified in M. occulta larvae, but their differentiation might be impaired due to reduction of Ebf expression levels.


Assuntos
Urocordados , Animais , Evolução Biológica , Larva/genética , Neurônios Motores , Notocorda , Urocordados/genética
5.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105848

RESUMO

Considerable efforts have been focused on shifting the wavelength of aequorin Ca2+-dependent blue bioluminescence through fusion with fluorescent proteins. This approach has notably yielded the widely used GFP-aequorin (GA) Ca2+ sensor emitting green light, and tdTomato-aequorin (Redquorin), whose bioluminescence is completely shifted to red, but whose Ca2+ sensitivity is low. In the present study, the screening of aequorin mutants generated at twenty-four amino acid positions in and around EF-hand Ca2+-binding domains resulted in the isolation of six aequorin single or double mutants (AequorinXS) in EF2, EF3, and C-terminal tail, which exhibited markedly higher Ca2+ sensitivity than wild-type aequorin in vitro. The corresponding Redquorin mutants all showed higher Ca2+ sensitivity than wild-type Redquorin, and four of them (RedquorinXS) matched the Ca2+ sensitivity of GA in vitro. RedquorinXS mutants exhibited unaltered thermostability and peak emission wavelengths. Upon stable expression in mammalian cell line, all RedquorinXS mutants reported the activation of the P2Y2 receptor by ATP with higher sensitivity and assay robustness than wt-Redquorin, and one, RedquorinXS-Q159T, outperformed GA. Finally, wide-field bioluminescence imaging in mouse neocortical slices showed that RedquorinXS-Q159T and GA similarly reported neuronal network activities elicited by the removal of extracellular Mg2+. Our results indicate that RedquorinXS-Q159T is a red light-emitting Ca2+ sensor suitable for the monitoring of intracellular signaling in a variety of applications in cells and tissues, and is a promising candidate for the transcranial monitoring of brain activities in living mice.


Assuntos
Equorina/genética , Cálcio/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Equorina/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Células CHO , Cálcio/farmacologia , Cricetulus , Motivos EF Hand , Células HEK293 , Humanos , Medições Luminescentes , Proteínas Luminescentes/genética , Camundongos Endogâmicos C57BL , Mutação , Rede Nervosa , Técnicas de Cultura de Órgãos , Estabilidade Proteica , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Proteínas Recombinantes de Fusão/genética
6.
Anal Chem ; 92(9): 6512-6520, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32153188

RESUMO

Solvatochromic dyes enable sensing and imaging of biomolecular organization in living systems by monitoring local polarity (lipophilicity), but most such dyes suffer from limited brightness, photostability, lack of a convenient spectral range, and limited sensitivity to polarity. Moreover, the presence of an electron acceptor group, typically a carbonyl, in its push-pull structure raises concerns about its potential chemical reactivity within the biological environment. In order to achieve robust bioimaging, we synthesized a push-pull pyrene probe bearing a ketone acceptor group (PK) and compared it with a recently developed aldehyde analogue (PA). We found that in live cells the aldehyde analogue PA transforms slowly (in ∼100 min) into blue-emissive species, assigned to in situ formation of an imine analogue, whereas the PK probe is stable in the presence of primary amines and inside cells. Like the parent PA, the new probe shows strong solvatochromism and an emission color response to lipid order in membranes (ordered vs disordered liquid phases), while its blue-shifted absorption is more optimal for excitation with 400 nm light sources. In live cells, the PK probe enables high-contrast polarity mapping of organelles using two-color ratiometric detection, suggesting that polarity increases in the following order: lipid droplets < plasma membranes < endoplasmic reticulum. In the zebrafish embryo, polarity imaging with the PK probe reveals a new dimension in visualizing the organization of tissues-lipophilicity distribution, where biomembranes, lipid droplets, cells, yolk, extracellular space, and newly formed organs are revealed by specific emission wavelengths of the probe. The newly developed probe and the proposed approach of polarity mapping open new opportunities for bioimaging at the cellular and animal level.


Assuntos
Corantes Fluorescentes/química , Pirenos/química , Animais , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Estrutura Molecular , Imagem Óptica , Peixe-Zebra/embriologia
7.
Methods Mol Biol ; 2040: 135-153, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31432479

RESUMO

Morphogenesis is the fundamental developmental process during which the embryo body is formed. Proper shaping of different body parts depends on cellular divisions and rearrangements in the growing embryo. Understanding three-dimensional shaping of organs is one of the basic questions in developmental biology. Here, we consider the early stages of pectoral fin development in zebrafish, which serves as a model for limb development in vertebrates, to study emerging shapes during embryogenesis. Most studies on pectoral fin are concerned with late stages of fin development when the structure is morphologically distinct. However, little is known about the early stages of pectoral fin formation because of the experimental difficulties in establishing proper imaging conditions during these stages to allow long-term live observation. In this protocol, we address the challenges of pectoral fin imaging during the early stages of zebrafish embryogenesis and provide a strategy for three-dimensional shape analysis of the fin. The procedure outlined here is aimed at studying pectoral fin during the first 24 h of its formation corresponding to the time period between 24 and 48 h of zebrafish development. The same principles could also be applied when studying three-dimensional shape establishment of other embryonic structures. We first discuss the imaging procedure and then propose strategies of extracting quantitative information regarding fin shape and dimensions.


Assuntos
Nadadeiras de Animais/diagnóstico por imagem , Embrião não Mamífero/diagnóstico por imagem , Imageamento Tridimensional/métodos , Microscopia Intravital/métodos , Imagem com Lapso de Tempo/métodos , Nadadeiras de Animais/embriologia , Animais , Animais Geneticamente Modificados , Desenvolvimento Embrionário , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Microscopia de Fluorescência/métodos , Software , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Proteína Vermelha Fluorescente
8.
Sci Rep ; 9(1): 7699, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31097745

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

9.
Methods Cell Biol ; 151: 399-418, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30948021

RESUMO

The Mediterranean sea urchin, Paracentrotus lividus, has been a powerful model to study embryonic development since the late 1800s. As a model, it has the advantage of having external fertilization, it can easily be manipulated experimentally, and it has semi-transparent embryonic stages, which makes it ideal for live imaging. Embryogenesis is a highly dynamic process with intrinsic variability. The reconstruction of cell dynamics and an assessment of such variability from in vivo observations has proven to be a challenge. Here, we provide an innovative methodology for manipulation and immobilization of embryos and their long-term 3D+time imaging. We then describe the twinning procedure that allows us to assess the variability and robustness of developmental processes. We demonstrate the reconstruction of cell lineages based on automated image processing and cell tracking using the BioEmergences workflow as well as the use of interactive visualization tools (Mov-IT software) for lineage validation, correction and analysis.


Assuntos
Desenvolvimento Embrionário/genética , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Ouriços-do-Mar/ultraestrutura , Animais , Linhagem da Célula/genética , Embrião não Mamífero/ultraestrutura , Fertilização , Ouriços-do-Mar/crescimento & desenvolvimento
10.
Sci Rep ; 9(1): 1835, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755665

RESUMO

Tissue internalisation is a key morphogenetic mechanism by which embryonic tissues generate complex internal organs and a number of studies of epithelia have outlined a general view of tissue internalisation. Here we have used quantitative live imaging and mutant analysis to determine whether similar mechanisms are responsible for internalisation in a tissue that apparently does not have a typical epithelial organisation - the zebrafish neural plate. We found that although zebrafish embryos begin neurulation without a conventional epithelium, medially located neural plate cells adopt strategies typical of epithelia in order to constrict their dorsal surface membrane during cell internalisation. Furthermore, we show that Myosin-II activity is a significant driver of this transient cell remodeling which also depends on Cdh2 (N-cadherin). Abrogation of Cdh2 results in defective Myosin-II distribution, mislocalised internalisation events and defective neural plate morphogenesis. Our work suggests Cdh2 coordinates Myosin-II dependent internalisation of the zebrafish neural plate.


Assuntos
Caderinas/metabolismo , Regulação da Expressão Gênica , Miosina Tipo II/metabolismo , Crista Neural/embriologia , Proteínas de Peixe-Zebra/metabolismo , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal , Membrana Celular/metabolismo , Movimento Celular , Epitélio/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Microscopia Confocal , Morfogênese , Miosinas/metabolismo , Placa Neural/embriologia , Oligonucleotídeos/farmacologia , Estudos Prospectivos , Peixe-Zebra/embriologia
11.
Phys Biol ; 16(2): 024001, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30560807

RESUMO

We investigate cell trajectories during zebrafish early embryogenesis based on 3D+time photonic microscopy imaging data. To remove the collective flow motion and focus on fluctuations, we analyze the deviations of pairs of neighboring cells. These deviations resemble Brownian motion and reveal different behaviors between pairs containing daughter cells generated by cell division and other pairs of neighboring cells. This observation justifies a common practice of using white noise fluctuations in modeling cell movement.


Assuntos
Divisão Celular , Movimento Celular , Desenvolvimento Embrionário , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/embriologia , Imageamento Tridimensional , Microscopia
12.
Development ; 145(8)2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29567671

RESUMO

Mammalian embryo cloning by nuclear transfer has a low success rate. This is hypothesized to correlate with a high variability of early developmental steps that segregate outer cells, which are fated to extra-embryonic tissues, from inner cells, which give rise to the embryo proper. Exploring the cell lineage of wild-type embryos and clones, imaged in toto until hatching, highlights the respective contributions of cell proliferation, death and asymmetric divisions to phenotypic variability. Preferential cell death of inner cells in clones, probably pertaining to the epigenetic plasticity of the transferred nucleus, is identified as a major difference with effects on the proportion of inner cell. In wild type and clones, similar patterns of outer cell asymmetric divisions are shown to be essential to the robust proportion of inner cells observed in wild type. Asymmetric inner cell division, which is not described in mice, is identified as a regulator of the proportion of inner cells and likely gives rise to resilient clones.


Assuntos
Divisão Celular Assimétrica , Massa Celular Interna do Blastocisto/citologia , Clonagem de Organismos/métodos , Animais , Contagem de Células , Morte Celular , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Simulação por Computador , Desenvolvimento Embrionário , Feminino , Proteínas de Fluorescência Verde/genética , Imageamento Tridimensional , Masculino , Microscopia de Fluorescência por Excitação Multifotônica , Técnicas de Transferência Nuclear , Gravidez , Coelhos
13.
Small ; 13(38)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28791769

RESUMO

Fluorescent polymer nanoparticles for long-term labeling and tracking of living cells with any desired color code are developed. They are built from biodegradable poly(lactic-co-glycolic acid) polymer loaded with cyanine dyes (DiO, DiI, and DiD) with the help of bulky fluorinated counterions, which minimize aggregation-caused quenching. At the single particle level, these particles are ≈20-fold brighter than quantum dots of similar color. Due to their identical 40 nm size and surface properties, these nanoparticles are endocytosed equally well by living cells. Mixing nanoparticles of three colors in different proportions generates a homogeneous RGB (red, green, and blue) barcode in cells, which is transmitted through many cell generations. Cell barcoding is validated on 7 cell lines (HeLa, KB, embryonic kidney (293T), Chinese hamster ovary, rat basophilic leucemia, U97, and D2A1), 13 color codes, and it enables simultaneous tracking of co-cultured barcoded cell populations for >2 weeks. It is also applied to studying competition among drug-treated cell populations. This technology enabled six-color imaging in vivo for (1) tracking xenografted cancer cells and (2) monitoring morphogenesis after microinjection in zebrafish embryos. In addition to a robust method of multicolor cell labeling and tracking, this work suggests that multiple functions can be co-localized inside cells by combining structurally close nanoparticles carrying different functions.


Assuntos
Nanopartículas/química , Polímeros/química , Animais , Carbocianinas/química , Sobrevivência Celular , Rastreamento de Células , Cor , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Fluorescência , Células HeLa , Humanos , Camundongos , Nanopartículas/ultraestrutura , Peixe-Zebra/embriologia
14.
Nat Commun ; 8: 13929, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112150

RESUMO

The study of multicellular development is grounded in two complementary domains: cell biomechanics, which examines how physical forces shape the embryo, and genetic regulation and molecular signalling, which concern how cells determine their states and behaviours. Integrating both sides into a unified framework is crucial to fully understand the self-organized dynamics of morphogenesis. Here we introduce MecaGen, an integrative modelling platform enabling the hypothesis-driven simulation of these dual processes via the coupling between mechanical and chemical variables. Our approach relies upon a minimal 'cell behaviour ontology' comprising mesenchymal and epithelial cells and their associated behaviours. MecaGen enables the specification and control of complex collective movements in 3D space through a biologically relevant gene regulatory network and parameter space exploration. Three case studies investigating pattern formation, epithelial differentiation and tissue tectonics in zebrafish early embryogenesis, the latter with quantitative comparison to live imaging data, demonstrate the validity and usefulness of our framework.


Assuntos
Simulação por Computador , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Modelos Biológicos , Animais , Padronização Corporal
15.
Elife ; 62017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28051766

RESUMO

Reconstructing the lineage of cells is central to understanding how the wide diversity of cell types develops. Here, we provide the neurosensory lineage reconstruction of a complex sensory organ, the inner ear, by imaging zebrafish embryos in vivo over an extended timespan, combining cell tracing and cell fate marker expression over time. We deliver the first dynamic map of early neuronal and sensory progenitor pools in the whole otic vesicle. It highlights the remodeling of the neuronal progenitor domain upon neuroblast delamination, and reveals that the order and place of neuroblasts' delamination from the otic epithelium prefigure their position within the SAG. Sensory and non-sensory domains harbor different proliferative activity contributing distinctly to the overall growth of the structure. Therefore, the otic vesicle case exemplifies a generic morphogenetic process where spatial and temporal cues regulate cell fate and functional organization of the rudiment of the definitive organ.


Assuntos
Linhagem da Célula , Orelha Interna/citologia , Orelha Interna/embriologia , Morfogênese , Células Receptoras Sensoriais/fisiologia , Células-Tronco/fisiologia , Peixe-Zebra , Animais , Imagem Óptica
16.
Photochem Photobiol ; 93(2): 448-465, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27925224

RESUMO

Calcium-activated photoproteins, such as aequorin, have been used as luminescent Ca2+ indicators since 1967. After the cloning of aequorin in 1985, microinjection was substituted by its heterologous expression, which opened the way for a widespread use. Molecular fusion of green fluorescent protein (GFP) to aequorin recapitulated the nonradiative energy transfer process that occurs in the jellyfish Aequorea victoria, from which these two proteins were obtained, resulting in an increase of light emission and a shift to longer wavelength. The abundance and location of the chimera are seen by fluorescence, whereas its luminescence reports Ca2+ levels. GFP-aequorin is broadly used in an increasing number of studies, from organelles and cells to intact organisms. By fusing other fluorescent proteins to aequorin, the available luminescence color palette has been expanded for multiplexing assays and for in vivo measurements. In this report, we will attempt to review the various photoproteins available, their reported fusions with fluorescent proteins and their biological applications to image Ca2+ dynamics in organelles, cells, tissue explants and in live organisms.


Assuntos
Equorina/metabolismo , Cálcio/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transferência de Energia , Proteínas Luminescentes/química , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química
17.
Sci Rep ; 6: 37438, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27910875

RESUMO

We conducted a quantitative comparison of developing sea urchin embryos based on the analysis of five digital specimens obtained by automatic processing of in toto 3D+ time image data. These measurements served the reconstruction of a prototypical cell lineage tree able to predict the spatiotemporal cellular organisation of a normal sea urchin blastula. The reconstruction was achieved by designing and tuning a multi-level probabilistic model that reproduced embryo-level dynamics from a small number of statistical parameters characterising cell proliferation, cell surface area and cell volume evolution along the cell lineage. Our resulting artificial prototype was embedded in 3D space by biomechanical agent-based modelling and simulation, which allowed a systematic exploration and optimisation of free parameters to fit the experimental data and test biological hypotheses. The spherical monolayered blastula and the spatial arrangement of its different cell types appeared tightly constrained by cell stiffness, cell-adhesion parameters and blastocoel turgor pressure.


Assuntos
Blástula/citologia , Linhagem da Célula/fisiologia , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Modelos Estatísticos , Ouriços-do-Mar/embriologia , Animais , Fenômenos Biomecânicos , Blástula/fisiologia , Proliferação de Células , Tamanho Celular , Simulação por Computador , Imageamento Tridimensional , Ouriços-do-Mar/citologia , Ouriços-do-Mar/fisiologia
18.
Nat Commun ; 7: 11288, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27088892

RESUMO

The precise positioning of organ progenitor cells constitutes an essential, yet poorly understood step during organogenesis. Using primordial germ cells that participate in gonad formation, we present the developmental mechanisms maintaining a motile progenitor cell population at the site where the organ develops. Employing high-resolution live-cell microscopy, we find that repulsive cues coupled with physical barriers confine the cells to the correct bilateral positions. This analysis revealed that cell polarity changes on interaction with the physical barrier and that the establishment of compact clusters involves increased cell-cell interaction time. Using particle-based simulations, we demonstrate the role of reflecting barriers, from which cells turn away on contact, and the importance of proper cell-cell adhesion level for maintaining the tight cell clusters and their correct positioning at the target region. The combination of these developmental and cellular mechanisms prevents organ fusion, controls organ positioning and is thus critical for its proper function.


Assuntos
Embrião não Mamífero/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas/genética , Adesão Celular/genética , Movimento Celular/genética , Sistema Digestório/citologia , Sistema Digestório/embriologia , Sistema Digestório/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Perfilação da Expressão Gênica/métodos , Gônadas/citologia , Gônadas/embriologia , Gônadas/metabolismo , Metaloproteínas/classificação , Metaloproteínas/genética , Metaloproteínas/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Imagem com Lapso de Tempo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/classificação , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Nat Commun ; 7: 8674, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26912388

RESUMO

The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology.


Assuntos
Embriologia/métodos , Imageamento Tridimensional/métodos , Microscopia , Fluxo de Trabalho , Animais , Linhagem da Célula , Proliferação de Células , Ouriços-do-Mar , Urocordados , Peixe-Zebra
20.
Sci Rep ; 5: 8738, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25736911

RESUMO

Regionalization is a critical, highly conserved step in the development of the vertebrate brain. Discrepancies exist in how regionalization of the anterior vertebrate forebrain is conceived since the "preoptic area" is proposed to be a part of the telencephalon in tetrapods but not in teleost fish. To gain insight into this complex morphogenesis, formation of the anterior forebrain was analyzed in 3D over time in zebrafish embryos, combining visualization of proliferation and differentiation markers, with that of developmental genes. We found that the region containing the preoptic area behaves as a coherent morphogenetic entity, organized around the optic recess and located between telencephalon and hypothalamus. This optic recess region (ORR) makes clear borders with its neighbor areas and expresses a specific set of genes (dlx2a, sim1a and otpb). We thus propose that the anterior forebrain (secondary prosencephalon) in teleosts contains three morphogenetic entities (telencephalon, ORR and hypothalamus), instead of two (telencephalon and hypothalamus). The ORR in teleosts could correspond to "telencephalic stalk area" and "alar hypothalamus" in tetrapods, resolving current inconsistencies in the comparison of basal forebrain among vertebrates.


Assuntos
Neurogênese/genética , Área Pré-Óptica/metabolismo , Prosencéfalo/metabolismo , Peixe-Zebra/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína Semelhante a ELAV 3/genética , Proteína Semelhante a ELAV 3/metabolismo , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hibridização in Situ Fluorescente , Microscopia Confocal , Modelos Anatômicos , Modelos Genéticos , Área Pré-Óptica/embriologia , Prosencéfalo/embriologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA