Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300307

RESUMO

The superior colliculus is an evolutionarily conserved midbrain region that is thought to mediate spatial orienting, including saccadic eye movements and covert spatial attention. Here, we reveal a role for the superior colliculus in higher-order cognition, independent of its role in spatial orienting. We trained rhesus macaques to perform an abstract visual categorization task that involved neither instructed eye movements nor differences in covert attention. We compared neural activity in the superior colliculus and the posterior parietal cortex, a region previously shown to causally contribute to abstract category decisions. The superior colliculus exhibits robust encoding of learned visual categories, which is stronger than in the posterior parietal cortex and arises at a similar latency in the two areas. Moreover, inactivation of the superior colliculus markedly impaired animals' category decisions. These results demonstrate that the primate superior colliculus mediates abstract, higher-order cognitive processes that have traditionally been attributed to the neocortex.

2.
Nat Neurosci ; 26(5): 879-890, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024575

RESUMO

Learning-to-learn, a progressive speedup of learning while solving a series of similar problems, represents a core process of knowledge acquisition that draws attention in both neuroscience and artificial intelligence. To investigate its underlying brain mechanism, we trained a recurrent neural network model on arbitrary sensorimotor mappings known to depend on the prefrontal cortex. The network displayed an exponential time course of accelerated learning. The neural substrate of a schema emerges within a low-dimensional subspace of population activity; its reuse in new problems facilitates learning by limiting connection weight changes. Our work highlights the weight-driven modifications of the vector field, which determines the population trajectory of a recurrent network and behavior. Such plasticity is especially important for preserving and reusing the learned schema in spite of undesirable changes of the vector field due to the transition to learning a new problem; the accumulated changes across problems account for the learning-to-learn dynamics.


Assuntos
Inteligência Artificial , Aprendizagem , Encéfalo , Redes Neurais de Computação , Córtex Pré-Frontal
3.
bioRxiv ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36711713

RESUMO

Categorization is a fundamental cognitive process by which the brain assigns stimuli to behaviorally meaningful groups. Investigations of visual categorization in primates have identified a hierarchy of cortical areas that are involved in the transformation of sensory information into abstract category representations. However, categorization behaviors are ubiquitous across diverse animal species, even those without a neocortex, motivating the possibility that subcortical regions may contribute to abstract cognition in primates. One candidate structure is the superior colliculus (SC), an evolutionarily conserved midbrain region that, although traditionally thought to mediate only reflexive spatial orienting, is involved in cognitive tasks that require spatial orienting. Here, we reveal a novel role of the primate SC in abstract, higher-order visual cognition. We compared neural activity in the SC and the posterior parietal cortex (PPC), a region previously shown to causally contribute to category decisions, while monkeys performed a visual categorization task in which they report their decisions with a hand movement. The SC exhibits stronger and shorter-latency category encoding than the PPC, and inactivation of the SC markedly impairs monkeys' category decisions. These results extend SC's established role in spatial orienting to abstract, non-spatial cognition.

4.
Cereb Cortex ; 27(4): 2469-2485, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27114172

RESUMO

Developmental dyslexia is a neurodevelopmental disorder with a strong genetic basis. Previous studies observed white matter alterations in the left posterior brain regions in adults and school-age children with dyslexia. However, no study yet has examined the development of tract-specific white matter pathways from the pre-reading to the fluent reading stage in children at familial risk for dyslexia (FHD+) versus controls (FHD-). This study examined white matter integrity at pre-reading, beginning, and fluent reading stages cross-sectionally ( n = 78) and longitudinally (n = 45) using an automated fiber-tract quantification method. Our findings depict white matter alterations and atypical lateralization of the arcuate fasciculus at the pre-reading stage in FHD+ versus FHD- children. Moreover, we demonstrate faster white matter development in subsequent good versus poor readers and a positive association between white matter maturation and reading development using a longitudinal design. Additionally, the combination of white matter maturation, familial risk, and psychometric measures best predicted later reading abilities. Furthermore, within FHD+ children, subsequent good readers exhibited faster white matter development in the right superior longitudinal fasciculus compared with subsequent poor readers, suggesting a compensatory mechanism. Overall, our findings highlight the importance of white matter pathway maturation in the development of typical and atypical reading skills.


Assuntos
Encéfalo/patologia , Dislexia/patologia , Vias Neurais/patologia , Substância Branca/patologia , Mapeamento Encefálico , Criança , Pré-Escolar , Estudos Transversais , Imagem de Tensor de Difusão , Feminino , Predisposição Genética para Doença , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Leitura
5.
Cereb Cortex ; 27(2): 1027-1036, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26643353

RESUMO

Developmental dyslexia (DD) is a heritable condition characterized by persistent difficulties in learning to read. White matter alterations in left-lateralized language areas, particularly in the arcuate fasciculus (AF), have been observed in DD, and diffusion properties within the AF correlate with (pre-)reading skills as early as kindergarten. However, it is unclear how early these alterations can be observed. We investigated white matter structure in 14 infants with (FHD+; ages 6.6-17.6 months) and 18 without (FHD-; ages 5.1-17.6 months) familial risk for DD. Diffusion scans were acquired during natural sleep, and early language skills were assessed. Tractography for bilateral AF was reconstructed using manual and automated methods, allowing for independent validation of results. Fractional anisotropy (FA) was calculated at multiple nodes along the tracts for more precise localization of group differences. The analyses revealed significantly lower FA in the left AF for FHD+ compared with FHD- infants, particularly in the central portion of the tract. Moreover, expressive language positively correlated with FA across groups. Our results demonstrate that atypical brain development associated with DD is already present within the first 18 months of life, suggesting that the deficits associated with DD may result from altered structural connectivity in left-hemispheric regions.


Assuntos
Dislexia/patologia , Substância Branca/patologia , Anisotropia , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Idioma , Aprendizagem , Masculino , Testes Neuropsicológicos , Leitura , Risco , Substância Branca/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA