Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804256

RESUMO

Lysosomal acid phosphatase 2 (Acp2) mutant mice (naked-ataxia, nax) have a severe cerebellar cortex defect with a striking reduction in the number of granule cells. Using a combination of in vivo and in vitro immunohistochemistry, Western blotting, BrdU assays, and RT-qPCR, we show downregulation of MYCN and dysregulation of the SHH signaling pathway in the nax cerebellum. MYCN protein expression is significantly reduced at P10, but not at the peak of proliferation at around P6 when the number of granule cells is strikingly reduced in the nax cerebellum. Despite the significant role of the SHH-MycN pathway in granule cell proliferation, our study suggests that a broader molecular pathway and additional mechanisms regulating granule cell development during the clonal expansion period are impaired in the nax cerebellum. In particular, our results indicate that downregulation of the protein synthesis machinery may contribute to the reduced number of granule cells in the nax cerebellum.


Assuntos
Fosfatase Ácida/genética , Ataxia Cerebelar/genética , Córtex Cerebelar/metabolismo , Proteínas Hedgehog/genética , Proteína Proto-Oncogênica N-Myc/genética , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Ataxia Cerebelar/metabolismo , Ataxia Cerebelar/patologia , Córtex Cerebelar/anormalidades , Córtex Cerebelar/patologia , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Lisossomos/genética , Lisossomos/patologia , Camundongos , Mutação , Neurônios/metabolismo , Neurônios/patologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Transdução de Sinais/genética
2.
Proc Natl Acad Sci U S A ; 116(34): 17061-17070, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31375626

RESUMO

Hypocretin/orexin (HCRT) and melanin concentrating hormone (MCH) neuropeptides are exclusively produced by the lateral hypothalamus and play important roles in sleep, metabolism, reward, and motivation. Loss of HCRT (ligands or receptors) causes the sleep disorder narcolepsy with cataplexy in humans and in animal models. How these neuropeptides are produced and involved in diverse functions remain unknown. Here, we developed methods to sort and purify HCRT and MCH neurons from the mouse late embryonic hypothalamus. RNA sequencing revealed key factors of fate determination for HCRT (Peg3, Ahr1, Six6, Nr2f2, and Prrx1) and MCH (Lmx1, Gbx2, and Peg3) neurons. Loss of Peg3 in mice significantly reduces HCRT and MCH cell numbers, while knock-down of a Peg3 ortholog in zebrafish completely abolishes their expression, resulting in a 2-fold increase in sleep amount. We also found that loss of HCRT neurons in Hcrt-ataxin-3 mice results in a specific 50% decrease in another orexigenic neuropeptide, QRFP, that might explain the metabolic syndrome in narcolepsy. The transcriptome results were used to develop protocols for the production of HCRT and MCH neurons from induced pluripotent stem cells and ascorbic acid was found necessary for HCRT and BMP7 for MCH cell differentiation. Our results provide a platform to understand the development and expression of HCRT and MCH and their multiple functions in health and disease.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Neurônios/metabolismo , Orexinas/metabolismo , Hormônios Hipofisários/metabolismo , Animais , Hormônios Hipotalâmicos/genética , Hipotálamo/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Melaninas/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Orexinas/genética , Hormônios Hipofisários/genética
3.
PLoS One ; 13(1): e0191222, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29377907

RESUMO

Protein thermostability engineering is a powerful tool to improve resistance of proteins against high temperatures and thereafter broaden their applications. For efficient protein thermostability engineering, different thermostability-classified data sources including sequences and 3D structures are needed for different protein families. However, no data source is available providing such data easily. It is the first release of ProtDataTherm database for analysis and engineering of protein thermostability which contains more than 14 million protein sequences categorized based on their thermal stability and protein family. This database contains data needed for better understanding protein thermostability and stability engineering. Providing categorized protein sequences and structures as psychrophilic, mesophilic and thermophilic makes this database useful for the development of new tools in protein stability prediction. This database is available at http://profiles.bs.ipm.ir/softwares/protdatatherm. As a proof of concept, the thermostability that improves mutations were suggested for one sample protein belonging to one of protein families with more than 20 mesophilic and thermophilic sequences and with known experimentally measured ΔT of mutations available within ProTherm database.


Assuntos
Bases de Dados de Proteínas , Engenharia de Proteínas , Estabilidade Proteica , Algoritmos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Temperatura Alta , Modelos Moleculares , Mutação , Termodinâmica
4.
BMC Bioinformatics ; 17(1): 527, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27955623

RESUMO

BACKGROUND: The alignment of protein-protein interaction (PPI) networks enables us to uncover the relationships between different species, which leads to a deeper understanding of biological systems. Network alignment can be used to transfer biological knowledge between species. Although different PPI-network alignment algorithms were introduced during the last decade, developing an accurate and scalable algorithm that can find alignments with high biological and structural similarities among PPI networks is still challenging. RESULTS: In this paper, we introduce a new global network alignment algorithm for PPI networks called PROPER. Compared to other global network alignment methods, our algorithm shows higher accuracy and speed over real PPI datasets and synthetic networks. We show that the PROPER algorithm can detect large portions of conserved biological pathways between species. Also, using a simple parsimonious evolutionary model, we explain why PROPER performs well based on several different comparison criteria. CONCLUSIONS: We highlight that PROPER has high potential in further applications such as detecting biological pathways, finding protein complexes and PPI prediction. The PROPER algorithm is available at http://proper.epfl.ch .


Assuntos
Algoritmos , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Animais , Humanos , Camundongos
5.
Biomaterials ; 103: 278-292, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27414719

RESUMO

Due to the increased morbidity and mortality resulting from heart valve diseases, there is a growing demand for off-the-shelf implantable tissue engineered heart valves (TEHVs). Despite the significant progress in recent years in improving the design and performance of TEHV constructs, viable and functional human implantable TEHV constructs have remained elusive. The recent advances in micro and nanoscale technologies including the microfabrication, nano-microfiber based scaffolds preparation, 3D cell encapsulated hydrogels preparation, microfluidic, micro-bioreactors, nano-microscale biosensors as well as the computational methods and models for simulation of biological tissues have increased the potential for realizing viable, functional and implantable TEHV constructs. In this review, we aim to present an overview of the importance and recent advances in micro and nano-scale technologies for the development of TEHV constructs.


Assuntos
Órgãos Bioartificiais , Valvas Cardíacas/crescimento & desenvolvimento , Dispositivos Lab-On-A-Chip , Nanopartículas/química , Técnicas de Cultura de Órgãos/instrumentação , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Desenho de Equipamento , Valvas Cardíacas/citologia , Humanos , Masculino , Avaliação da Tecnologia Biomédica , Engenharia Tecidual/métodos
6.
Micromachines (Basel) ; 7(9)2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-30404334

RESUMO

Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing microfluidic-based organ-on-chip models for drug testing and highlights current state-of-the-art in developing predictive multi-organ models for studying the cross-talk of interconnected organs. We further discuss the challenges associated with establishing a predictive body-on-chip (BOC) model such as the scaling, cell types, the common medium, and principles of the study design for characterizing the interaction of drugs with multiple targets.

7.
PLoS Genet ; 10(1): e1004066, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24391524

RESUMO

The DNA uptake of naturally competent bacteria has been attributed to the action of DNA uptake machineries resembling type IV pilus complexes. However, the protein(s) for pulling the DNA across the outer membrane of Gram-negative bacteria remain speculative. Here we show that the competence protein ComEA binds incoming DNA in the periplasm of naturally competent Vibrio cholerae cells thereby promoting DNA uptake, possibly through ratcheting and entropic forces associated with ComEA binding. Using comparative modeling and molecular simulations, we projected the 3D structure and DNA-binding site of ComEA. These in silico predictions, combined with in vivo and in vitro validations of wild-type and site-directed modified variants of ComEA, suggested that ComEA is not solely a DNA receptor protein but plays a direct role in the DNA uptake process. Furthermore, we uncovered that ComEA homologs of other bacteria (both Gram-positive and Gram-negative) efficiently compensated for the absence of ComEA in V. cholerae, suggesting that the contribution of ComEA in the DNA uptake process might be conserved among naturally competent bacteria.


Assuntos
Proteínas de Ligação a DNA/genética , DNA/metabolismo , Transformação Bacteriana/genética , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/química , DNA/genética , Proteínas de Ligação a DNA/química , Periplasma/genética , Periplasma/metabolismo , Vibrio cholerae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...