Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792199

RESUMO

Two series of sugar esters with alkyl chain lengths varying from 5 to 12 carbon atoms, and with a head group consisting of glucose or galactose moieties, were synthesized. Equilibrium surface tension isotherms were measured, yielding critical micellar concentration (CMC) surface tensions at CMC (γcmc) and minimum areas at the air-water interface (Amin). In addition, Krafft temperatures (Tks) were measured to characterize the ability of molecules to dissolve in water, which is essential in numerous applications. As a comparison to widely used commercial sugar-based surfactants, those measurements were also carried out for four octyl d-glycosides. Impacts of the linkages between polar and lipophilic moieties, alkyl chain lengths, and the nature of the sugar head group on the measured properties were highlighted. Higher Tk and, thus, lower dissolution ability, were found for methyl 6-O-acyl-d-glucopyranosides. CMC and γcmc decreased with the alkyl chain lengths in both cases, but Amin did not appear to be influenced. Both γcmc and Amin appeared independent of the ester group orientation. Notably, alkyl (methyl α-d-glucopyranosid)uronates were found to result in noticeably lower CMC, possibly due to a closer distance between the carbonyl function and the head group.

2.
J Colloid Interface Sci ; 609: 200-211, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34896824

RESUMO

HYPOTHESES: The performance of bicontinuous microemulsions is usually assessed on the characteristics of the middle phase at equilibrium. However, applied to Enhanced Oil Recovery, such an evaluation would not be representative of the structure and composition of fluids in reservoir rocks. Studies on the properties of non-equilibrated microemulsions are still needed to better understand the formation of such complex systems, in particular to optimize input parameters of process simulation tools. EXPERIMENTS: For this purpose, we monitored the formation of a microemulsion from contact with the oil to equilibrium when no mixing or convection is provided. Non-destructive methods such as Nuclear Magnetic Resonance, Micro-Computed Tomography, Dynamic Light Scattering and Small Angle X-ray scattering were used to extract the compositions, phase thicknesses, dynamics and structures of the system over time. FINDING: We found that the system gets structured into several layers over time that include the transient presence of an oriented semi-crystalline phase. The growth of the bicontinuous middle phase results from a progressive reorganization of the liquid crystal. The compositional and structural gradients, observed along the sample height, are correlated and linked to the corresponding structures of the phase diagram of the quaternary system. Equilibrium is reached after the total transfer of the liquid crystal into the bicontinuous phase.

3.
Sci Total Environ ; 784: 147151, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33895515

RESUMO

Hydrophobic organic soil contaminants such as polycyclic aromatic hydrocarbons (PAH) are poorly mobile in the aqueous phase and tend to sorb to the soil matrix, resulting in low bioavailability. Some filamentous fungi are efficient in degrading this kind of pollutants. However, the mechanism of mobilization of hydrophobic compounds by non-motile microorganisms such as filamentous fungi needs investigations to improve pollutant bioavailability and bioremediation efficiency. Usual homogeneous media for microbial growth in the lab are poorly suited to model the soil, which is a compartmentalized and heterogeneous habitat. A microfluidic device was designed to implement a compartmentalization of the fungal inoculum and the source of the pollutant benzo[a]pyrene (BaP) as a deposit of solid crystals in order to gain a further insight into the mechanisms involved in the access to the contaminant and its uptake in soils. Thus in this device, two chambers are connected by an array of parallel microchannels that are wide enough to allow individual hyphae to grow through them. Macro-cultures of Talaromyces helicus in direct contact with BaP have shown its uptake and intracellular storage in lipid bodies despite the low propensity of BaP to cross aqueous phases as shown by simulation. Observations of T. helicus in the microfluidic device through laser scanning confocal microscopy indicate preferential uptake of BaP at a close range and through contact with the cell wall. However faint staining of some hyphae before contact with the deposit also suggests an extracellular transport phenomenon. Macro-culture filtrates analyses have shown that T. helicus releases extracellular non-lipidic surface-active compounds able to lower the surface tension of culture filtrates to 49.4 mN/m. Thus, these results highlight the significance of active mechanisms to reach hydrophobic contaminants before their uptake by filamentous fungi in compartmentalized micro-environments and the potential to improve them through biostimulation approaches for soil mycoremediation.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Benzo(a)pireno , Biodegradação Ambiental , Fungos , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Talaromyces
4.
Adv Colloid Interface Sci ; 270: 87-100, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31200263

RESUMO

In this review, structure-property trends are systematically analyzed for four amphiphilic properties of sugar-based surfactants: critical micelle concentration (CMC), its associated surface tension (γCMC), efficiency (pC20) and Krafft temperature (TK). First, the impact on amphiphilic properties of the alkyl chain size and the presence of branching and/or unsaturation is investigated. Then, various polar head parameters are explored, such as the degree of polymerization of the sugar unit (mono- or oligosaccharides), the chemical nature of the linker and the sugar configuration. Some systematic comparisons between ethoxylated surfactants and sugar-based surfactants are also carried out. While some structural trends with the impact of alkyl chain length or the polar head size are now well understood, this analysis points out that systematic studies of more specific effects of alkyl chain (e.g. branching, unsaturation, presence of rings, position on the polar head) and polar head (e.g. linker, anomeric configuration, internal stereochemistry, cyclic vs. acyclic sugar residues) were scarcer or not available to date. This work encourages the use of these structural trends in the perspective of developing new bio-based surfactants and their consideration in predictive models. It also highlights the need of further experimental tests to fill remaining gaps notably to explore some specific structural features (such as the introduction of rings in the alkyl chain or the position of the alkyl chain on the polar head) and towards applicative properties (like foaming capacity or wettability).

5.
J Colloid Interface Sci ; 516: 162-171, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29367067

RESUMO

HYPOTHESIS: Surface tension of aqueous solutions of surfactants at their critical micelle concentrations (γCMC), may be quantitatively linked to the surfactant structure using Quantitative Structure Property Relationships (QSPR), all other factors held equal (temperature, presence of additive or salts). Thus, QSPR models can allow improved understanding and quantification of structure-γCMC trends, direct γCMC predictions, and finally help to design renewable substitutes for petroleum-based surfactants. EXPERIMENTS AND METHODS: A dataset of 70 γCMC of single surfactants at ambient temperature has been gathered from several research papers. Then, descriptors of the whole structure, of polar heads and of alkyl chains of the 70 surfactants were calculated and introduced in multilinear regressions to evidence the most predictive and physically meaningful structure property relationships. FINDINGS: The best model, based on quantum chemical descriptors, achieved a standard error of 2.4 mN/m on an external validation. Simpler models were also achieved based solely on the count of H atoms of the polar head but with prediction error of 2.9 mN/m. Among all identified factors affecting γCMC of sugar-based surfactants (polar head size, alkyl chain length and branching), polar head size was found to exhibit the only effect clearly taken into account by all the models.

6.
Toxicol In Vitro ; 40: 305-312, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28163247

RESUMO

Sugar-based surfactants present surface-active properties and relatively low cytotoxicity. They are often considered as safe alternatives to currently used surfactants in cosmetic industries. In this study, four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or a maltose headgroup through an amide linkage, were synthesized and compared to two standard surfactants. The cytotoxic and irritant effects of surfactants were evaluated using two biologically relevant models: 3D dermal model (mouse fibroblasts embedded in collagen gel) and reconstituted human epidermis (RHE, multi-layered human keratinocytes). Results show that three synthesized surfactants possess lower cytotoxicity compared to standard surfactants as demonstrated in the 3D dermal model. Moreover, the IC50s of surfactants against the 3D dermal model are higher than IC50s obtained with the 2D dermal model (monolayer mouse fibroblasts). Both synthesized and standard surfactants show no irritant effects after 48h of topical application on RHE. Throughout the study, we demonstrate the difficulty to link the physico-chemical properties of surfactants and their cytotoxicity in complex models. More importantly, our data suggest that, prior to in vivo tests, a complete understanding of surfactant cytotoxicity or irritancy potential requires a combination of cellular and tissue models.


Assuntos
Amidas/toxicidade , Glucose/química , Irritantes/toxicidade , Maltose/química , Pele/efeitos dos fármacos , Tensoativos/toxicidade , Alternativas aos Testes com Animais , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colágeno , Fibroblastos/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Camundongos , Modelos Biológicos
7.
Molecules ; 21(10)2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27689983

RESUMO

Large quantities (>3 g) of a new series of alkyl uronates were synthesized in two steps from commercial methyl hexopyranosides. Firstly, several tens of grams of free methyl α-d-glucopyranoside were selectively and quantitatively oxidized into corresponding sodium uronate using 2,2,6,6-tetramethyl-1-piperidinyloxy free radical (TEMPO)-catalyzed oxidation. Hydrophobic chains of different length were then introduced by acid-mediated esterification with fatty alcohols (ethyl to lauryl alcohol) leading to the desired alkyl glucuronates with moderate to good yields (49%-72%). The methodology was successfully applied to methyl α-d-mannopyranoside and methyl ß-d-galactopyranoside. Physicochemical properties, such as critical micelle concentration (CMC), equilibrium surface tension at CMC (γcmc), solubility, and Krafft temperature were measured, and the effect of structural modifications on surface active properties and micelle formation was discussed.

8.
Colloids Surf B Biointerfaces ; 145: 79-86, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27137806

RESUMO

Surfactants derived from the biorefinery process can present interesting surface-active properties, low cytotoxicity, high biocompatibility and biodegradability. They are therefore considered as potential sustainable substitutes to currently used petroleum-based surfactants. To better understand and anticipate their performances, structure-property relationships need to be carefully investigated. For this reason, we applied a multidisciplinary approach to systematically explore the effect of subtle structural variations on both physico-chemical properties and biological effects. Four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or maltose head group by an amide linkage, were synthesized and evaluated together along with two commercially available standard surfactants. Physico-chemical properties including solubility, Krafft point, surface-tension lowering and critical micellar concentration (CMC) in water and biological medium were explored. Cytotoxicity evaluation by measuring proliferation index and metabolic activity against dermal fibroblasts showed that all surfactants studied may induce cell death at low concentrations (below their CMC). Results revealed significant differences in both physico-chemical properties and cytotoxic effects depending on molecule structural features, such as the position of the linkage on the sugar head-group, or the orientation of the amide linkage. Furthermore, the cytotoxic response increased with the reduction of surfactant CMC. This study underscores the relevance of a methodical and multidisciplinary approach that enables the consideration of surfactant solution properties when applied to biological materials. Overall, our results will contribute to a better understanding of the concomitant impact of surfactant structure at physico-chemical and biological levels.


Assuntos
Tensoativos/química , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Glucose/química , Humanos , Maltose/química , Propriedades de Superfície , Tensão Superficial , Tensoativos/farmacologia
9.
J Periodontal Implant Sci ; 46(6): 362-371, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28050314

RESUMO

PURPOSE: The increasing demand for esthetically pleasing results has contributed to the use of ceramics for dental implant abutments. The aim of this study was to compare the biological response of epithelial tissue cultivated on lithium disilicate (LS2) and zirconium oxide (ZrO2) ceramics. Understanding the relevant physicochemical and mechanical properties of these ceramics will help identify the optimal material for facilitating gingival wound closure. METHODS: Both biomaterials were prepared with 2 different surface treatments: raw and polished. Their physicochemical characteristics were analyzed by contact angle measurements, scanning white-light interferometry, and scanning electron microscopy. An organotypic culture was then performed using a chicken epithelium model to simulate peri-implant soft tissue. We measured the contact angle, hydrophobicity, and roughness of the materials as well as the tissue behavior at their surfaces (cell migration and cell adhesion). RESULTS: The best cell migration was observed on ZrO2 ceramic. Cell adhesion was also drastically lower on the polished ZrO2 ceramic than on both the raw and polished LS2. Evaluating various surface topographies of LS2 showed that increasing surface roughness improved cell adhesion, leading to an increase of up to 13%. CONCLUSIONS: Our results demonstrate that a biomaterial, here LS2, can be modified using simple surface changes in order to finely modulate soft tissue adhesion. Strong adhesion at the abutment associated with weak migration assists in gingival wound healing. On the same material, polishing can reduce cell adhesion without drastically modifying cell migration. A comparison of LS2 and ZrO2 ceramic showed that LS2 was more conducive to creating varying tissue reactions. Our results can help dental surgeons to choose, especially for esthetic implant abutments, the most appropriate biomaterial as well as the most appropriate surface treatment to use in accordance with specific clinical dental applications.

10.
J Org Chem ; 77(21): 9553-61, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23020740

RESUMO

A novel photochromic azobenzene-based surfactant was described for organic chemistry in water. The molecule 4-butylazobenzyl-4'-triazologlucuronic acid sodium salt thus synthesized can be isomerized from its trans to its cis form reversibly in solution by simple light irradiation. That property allowed the recyclability of a model acetylation reaction performed in the surfactant media, compared to the well-known, commercially available sodium dodecyl sulfate surfactant media.

11.
J Colloid Interface Sci ; 386(1): 218-27, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22909967

RESUMO

This article deals with a model mixed oil-in-water (O/W) emulsion system developed to study the effect of surfactants on mass transfer between dispersed oil droplets of different composition. In this purpose, our goal was to formulate O/W emulsions without any surface active agents as stabilizer, which was achieved by replacing surfactants by a mixture of hydrophilic/hydrophobic silica particles. Then, to study the specific role of surfactants in the oil transfer process, different types and concentrations of surfactants were added to the mixed emulsion after its preparation. In such a way, the same original emulsion can be used for all experiments and the influence of various surface active molecules on the oil transfer mechanism can be directly studied. The model mixed emulsion used consists of a mixture of hexadecane-in-water and tetradecane-in-water emulsions. The transfer between tetradecane and hexadecane droplets was monitored by using differential scanning calorimetry, which allows the detection of freezing and melting signals characteristic of the composition of the dispersed oil droplets. The results obtained showed that it is possible to trigger the transfer of tetradecane towards hexadecane droplets by adding surfactants at concentrations above their critical micellar concentration, measured in presence of solid particles, through micellar transport mechanism.

12.
Langmuir ; 26(4): 2333-8, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20141200

RESUMO

Dry water is a very convenient way of encapsulating a high amount of aqueous solutions in a powder form made of hydrophobic silica nanoparticles. It was demonstrated in previous studies that both solid and liquid interfacial properties influence the quality of the final product resulting occasionally in mousse formation. To explain this behavior, contact angles of silica nanoparticles have been measured for water and water/ethanol solution by means of liquid intrusion experiments. It was found that the quality of the final product correlates with the contact angle, i.e., contact angle close to 105 degrees leads to mousse formation whereas a slightly higher value of approximately 118 degrees allows dry water formation. The proposed explanation was based on the energy of immersion and adhesion defined as the energy needed for a spherical particle to respectively penetrate into the liquid or attach at the liquid/air interface. Significantly lower energy of immersion calculated for lower contact angle might account for particle penetration into the liquid phase during processing, leading to continuous network aggregation, air entrapment, and finally mousse formation.


Assuntos
Nanopartículas/química , Dióxido de Silício/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície
13.
Colloids Surf B Biointerfaces ; 68(2): 238-44, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19108996

RESUMO

Wettability of biomaterials surfaces and protein-coated substrates is generally characterized with the sessile drop technique using polar and apolar liquids. This procedure is often performed in air, which does not reflect the physiological conditions. In this study, liquid/liquid contact angle measurements were carried out to be closer to cell culture conditions. This technique allowed us to evaluate the polar contribution to the work of adhesion between an aqueous medium and four selected biomaterials widely used in tissue culture applications: bacteriological grade polystyrene (PS), tissue culture polystyrene (tPS), poly(2-hydroxyethyl methacrylate) film (PolyHEMA), and hydroxypropylmethylcellulose-carboxymethylcellulose bi-layered Petri dish (CEL). The contributions of polar interactions were also estimated on the same biomaterials after fibronectin (Fn) adsorption. The quantity of Fn adsorbed on PS, tPS, PolyHEMA and CEL surfaces was evaluated by using the fluorescein-labeled protein. PolyHEMA and CEL were found to be hydrophilic, tPS was moderately hydrophilic and PS was highly hydrophobic. After Fn adsorption on PS and tPS, a significant increase of the surface polar interaction was observed. On PolyHEMA and CEL, no significant adsorption of Fn was detected and the polar interactions remained unchanged. Finally, an inverse correlation between the polarity of the surfaces and the quantity of adsorbed Fn was established.


Assuntos
Materiais Biocompatíveis/química , Fibronectinas/metabolismo , Teste de Materiais/métodos , Água/química , Adesividade , Adsorção , Fluorescência , Humanos , Hidrocarbonetos Iodados/química , Octanos/química , Polímeros/química , Tensão Superficial
14.
Langmuir ; 24(20): 11734-42, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18816077

RESUMO

The development of adhesive as well as antiadhesive surfaces is essential in various biomaterial applications. In this study, we have used a multidisciplinary approach that combines biological and physicochemical methods to progress in our understanding of cell-surface interactions. Four model surfaces have been used to investigate fibronectin (Fn) adsorption and the subsequent morphology and adhesion of preosteoblasts. Such experimental conditions lead us to distinguish between anti- and proadhesive substrata. Our results indicate that Fn is not able to induce cell adhesion on antiadhesive materials. On adhesive substrata, Fn did not increase the number of adherent cells but favored their spreading. This work also examined Fn-surface interactions using ELISA immunoassays, fluorescent labeling of Fn, and force spectroscopy with Fn-modified tips. The results provided clear evidence of the advantages and limitations of each technique. All of the techniques confirmed the important adsorption of Fn on proadhesive surfaces for cells. By contrast, antiadhesive substrata for cells avoided Fn adsorption. Furthermore, ELISA experiments enabled us to verify the accessibility of cell binding sites to adsorbed Fn molecules.


Assuntos
Fibronectinas/química , Células 3T3 , Adesividade , Adsorção , Animais , Materiais Biocompatíveis/química , Adesão Celular , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoensaio/métodos , Camundongos , Microscopia de Força Atômica/instrumentação , Microscopia de Força Atômica/métodos , Osteoblastos/citologia , Propriedades de Superfície , Água/química
15.
Carbohydr Res ; 342(2): 154-62, 2007 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-17182017

RESUMO

Unsaturated fatty alkyl xylosides and the corresponding 1-O-acyl esters were prepared. Critical micellar concentrations, surface tension areas per molecule and foaming value of some of these new amphiphilic compounds have been determined.


Assuntos
Tensoativos/química , Xilose/química , Glicosídeos/química , Estrutura Molecular , Propriedades de Superfície , Tensoativos/síntese química
16.
Carbohydr Res ; 341(11): 1938-44, 2006 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-16697984

RESUMO

Interfacial properties of octadienyl pentosides prepared by the palladium-catalyzed telomerization of butadiene with free pentoses have been evaluated and compared to those of mixtures issued from the autoclaving process.


Assuntos
Butadienos/química , Glicosídeos/síntese química , Pentoses/química , Tensoativos/química , Algoritmos , Catálise , Glicosídeos/química , Modelos Químicos , Estrutura Molecular , Paládio/química , Estereoisomerismo , Propriedades de Superfície
17.
J Pharm Sci ; 91(4): 1135-46, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11948552

RESUMO

The purpose of this work was to elucidate the transport pathways of zinc insulin across the Calu-3 cell monolayer, an in vitro model of the human airway epithelium. Calu-3 cells grown in liquid-covered conditions formed a confluent monolayer with a high transepithelial electrical resistance value of 1000 +/- 150 Omega small middle dot cm(2). The cell monolayer was characterized by a low mannitol permeability of 4.7 +/- 0.5 10(-7)cm/s. Transport of zinc insulin (donor concentration 1 U/mL) in Dulbecco's modified phosphate buffer saline at 37 degrees C was found to be higher in the basolateral (BL) to apical (AP) (P(app) = 3.0 +/- 0.2 10(-8) cm/s), than in the AP to BL direction (P(app) = 0.41 +/- 0.02 10(-8) cm/s). P-glycoprotein efflux or specific enzymatic degradation did not appear to contribute toward this asymmetric transport. Insulin receptors, though apparently more abundant on the BL side than on the AP side of Calu-3 cells, did not mediate the direction-dependent transport of insulin. However, transport of a monomeric human insulin analog, Asp(B10)des(B28-30), across the Calu-3 cell monolayer was similar in both directions (BL to AP and AP to BL). The corresponding permeability, P(app) = 2.9 +/- 0.2 10(-8) cm/s, was not significantly different from the permeability of zinc insulin in the BL to AP direction. The paracellular pathway seems to play a major role in the insulin transport across the Calu-3 cell monolayers. We hypothesize that the transport of zinc insulin oligomers is restricted at the AP surface by the presence of the tight junctional complexes. From the BL side, oligomers may undergo dissociation in the intercellular space and diffuse readily as monomers to the AP surface of the membrane.


Assuntos
Brônquios/citologia , Brônquios/metabolismo , Insulina/análogos & derivados , Insulina/farmacocinética , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Pulmão/citologia , Pulmão/metabolismo , Transporte Proteico , Receptor de Insulina/metabolismo , Suínos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...