Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Intern Med ; 287(6): 645-664, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32012363

RESUMO

Mitochondria play central roles in cellular energetics, metabolism and signalling. Efficient respiration, mitochondrial quality control, apoptosis and inheritance of mitochondrial DNA depend on the proper architecture of the mitochondrial membranes and a dynamic remodelling of inner membrane cristae. Defects in mitochondrial architecture can result in severe human diseases affecting predominantly the nervous system and the heart. Inner membrane morphology is generated and maintained in particular by the mitochondrial contact site and cristae organizing system (MICOS), the F1 Fo -ATP synthase, the fusion protein OPA1/Mgm1 and the nonbilayer-forming phospholipids cardiolipin and phosphatidylethanolamine. These protein complexes and phospholipids are embedded in a network of functional interactions. They communicate with each other and additional factors, enabling them to balance different aspects of cristae biogenesis and to dynamically remodel the inner mitochondrial membrane. Genetic alterations disturbing these membrane-shaping factors can lead to human pathologies including fatal encephalopathy, dominant optic atrophy, Leigh syndrome, Parkinson's disease and Barth syndrome.


Assuntos
Doenças Mitocondriais/genética , Membranas Mitocondriais/metabolismo , DNA Mitocondrial/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação/genética
2.
Nat Struct Biol ; 8(12): 1074-82, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11713477

RESUMO

Proteins imported into the mitochondrial matrix are synthesized in the cytosol with an N-terminal presequence and are translocated through hetero-oligomeric translocase complexes of the outer and inner mitochondrial membranes. The channel across the inner membrane is formed by the presequence translocase, which consists of roughly six distinct subunits; however, it is not known which subunits actually form the channel. Here we report that purified Tim23 forms a hydrophilic, approximately 13-24 A wide channel characteristic of the mitochondrial presequence translocase. The Tim23 channel is cation selective and activated by a membrane potential and presequences. The channel is formed by the C-terminal domain of Tim23 alone, whereas the N-terminal domain is required for selectivity and a high-affinity presequence interaction. Thus, Tim23 forms a voltage-sensitive high-conductance channel with specificity for mitochondrial presequences.


Assuntos
Ativação do Canal Iônico , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/química , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Eletrofisiologia , Membranas Intracelulares/química , Membranas Intracelulares/enzimologia , Membranas Intracelulares/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Substâncias Macromoleculares , Potenciais da Membrana , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Mitocôndrias/enzimologia , Mitocôndrias/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mutação/genética , Permeabilidade , Ligação Proteica , Precursores de Proteínas/química , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
3.
Mol Cell Biol ; 21(20): 7097-104, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11564892

RESUMO

The mitochondrial heat shock protein Hsp70 (mtHsp70) is essential for driving translocation of preproteins into the matrix. Two models, trapping and pulling by mtHsp70, are discussed, but positive evidence for either model has not been found so far. We have analyzed a mutant mtHsp70, Ssc1-2, that shows a reduced interaction with the membrane anchor Tim44, but an enhanced trapping of preproteins. Unexpectedly, at a low inner membrane potential, ssc1-2 mitochondria imported loosely folded preproteins more efficiently than wild-type mitochondria. The import of a tightly folded preprotein, however, was not increased in ssc1-2 mitochondria. Thus, enhanced trapping by mtHsp70 stimulates the import of loosely folded preproteins and reduces the dependence on the import-driving activity of the membrane potential, directly demonstrating that trapping is one of the molecular mechanisms of mtHsp70 action.


Assuntos
Membrana Celular/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Cisplatino/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/metabolismo , Potenciais da Membrana , Proteínas de Membrana/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Chaperonas Moleculares/metabolismo , Mutação , Testes de Precipitina , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
4.
Crit Rev Biochem Mol Biol ; 36(3): 291-336, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11450972

RESUMO

Most mitochondrial proteins are transported from the cytosol into the organelle. Due to the division of mitochondria into an outer and inner membrane, an intermembrane space and a matrix, an elaborated system for recognition and transport of preproteins has evolved. The translocase of the outer mitochondrial membrane (TOM) and the translocases of the inner mitochondrial membrane (TIM) mediate these processes. Receptor proteins on the cytosolic face of mitochondria recognize the cargo proteins and transfer them to the general import pore (GIP) of the outer membrane. Following the passage of preproteins through the outer membrane they are transported with the aid of the TIM23 complex into either the matrix, inner membrane, or intermembrane space. Some preprotein families utilize the TIM22 complex for their insertion into the inner membrane. The identification of protein components, which are involved in these transport processes, as well as significant insights into the molecular function of some of them, has been achieved in recent years. Moreover, we are now approaching a new era in which elaborated techniques have already allowed and will enable us to gather information about the TOM and TIM complexes on an ultrastructural level.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais , Precursores de Proteínas/metabolismo , Transporte Proteico/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Transporte/fisiologia , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas Fúngicas/fisiologia , Proteínas de Choque Térmico HSP70/fisiologia , Humanos , Membranas Intracelulares/metabolismo , Substâncias Macromoleculares , Potenciais da Membrana , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Biológicos , Dados de Sequência Molecular , Neurospora crassa/metabolismo , Porinas/fisiologia , Sinais Direcionadores de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Canais de Ânion Dependentes de Voltagem
5.
Rev Physiol Biochem Pharmacol ; 143: 81-136, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11428265

RESUMO

Most mitochondrial proteins are nuclear-encoded and synthesised as preproteins on polysomes in the cytosol. They must be targeted to and translocated into mitochondria. Newly synthesised preproteins interact with cytosolic factors until their recognition by receptors on the surface of mitochondria. Import into or across the outer membrane is mediated by a dynamic protein complex coined the translocase of the outer membrane (TOM). Preproteins that are imported into the matrix or inner membrane of mitochondria require the action of one of two translocation complexes of the inner membrane (TIMs). The import pathway of preproteins is predetermined by their intrinsic targeting and sorting signals. Energy input in the form of ATP and the electrical gradient across the inner membrane is required for protein translocation into mitochondria. Newly imported proteins may require molecular chaperones for their correct folding.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Transporte Proteico , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Precursores de Proteínas/metabolismo , Canais de Translocação SEC , Proteínas SecA
7.
Nat Rev Mol Cell Biol ; 2(5): 339-49, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11331908

RESUMO

The vast majority of mitochondrial proteins are synthesized in the cytosol and are imported into mitochondria by protein machineries located in the mitochondrial membranes. It has become clear that hydrophilic as well as hydrophobic preproteins use a common translocase in the outer mitochondrial membrane, but diverge to two distinct translocases in the inner membrane. The translocases are dynamic, high-molecular-weight complexes that have to provide specific means for the recognition of preproteins, channel formation and generation of import-driving forces.


Assuntos
Proteínas de Transporte/metabolismo , Citosol/metabolismo , Mitocôndrias/metabolismo , Transporte Biológico/fisiologia
8.
Mol Cell Biol ; 21(7): 2337-48, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11259583

RESUMO

The preprotein translocase of the yeast mitochondrial outer membrane (TOM) consists of the initial import receptors Tom70 and Tom20 and a approximately 400-kDa (400 K) general import pore (GIP) complex that includes the central receptor Tom22, the channel Tom40, and the three small Tom proteins Tom7, Tom6, and Tom5. We report that the GIP complex is a highly stable complex with an unusual resistance to urea and alkaline pH. Under mild conditions for mitochondrial lysis, the receptor Tom20, but not Tom70, is quantitatively associated with the GIP complex, forming a 500K to 600K TOM complex. A preprotein, stably arrested in the GIP complex, is released by urea but not high salt, indicating that ionic interactions are not essential for keeping the preprotein in the GIP complex. Under more stringent detergent conditions, however, Tom20 and all three small Tom proteins are released, while the preprotein remains in the GIP complex. Moreover, purified outer membrane vesicles devoid of translocase components of the intermembrane space and inner membrane efficiently accumulate the preprotein in the GIP complex. Together, Tom40 and Tom22 thus represent the functional core unit that stably holds accumulated preproteins. The GIP complex isolated from outer membranes exhibits characteristic TOM channel activity with two coupled conductance states, each corresponding to the activity of purified Tom40, suggesting that the complex contains two simultaneously active and coupled channel pores.


Assuntos
Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Receptores Citoplasmáticos e Nucleares , Proteínas de Saccharomyces cerevisiae , Proteínas Fúngicas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Saccharomyces cerevisiae , Transdução de Sinais
9.
EMBO J ; 20(5): 941-50, 2001 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11230118

RESUMO

Unfolding is an essential process during translocation of preproteins into mitochondria; however, controversy exists as to whether mitochondria play an active role in unfolding. We have established an in vitro system with a kinetic saturation of the mitochondrial import machinery, yielding translocation rates comparable to in vivo import rates. Preproteins with short N-terminal segments in front of a folded domain show a characteristic delay of the onset of translocation (lag phase) although the maximal import rate is similar to that of longer preproteins. The lag phase is shortened by extending the N-terminal segment to improve the accessibility to matrix heat shock protein 70 and abolished by unfolding of the preprotein. A mutant mtHsp70 defective in binding to the inner membrane prolongs the lag phase and reduces the translocation activity. A direct comparison of the rate of spontaneous unfolding in solution with that during translocation demonstrates that unfolding by mitochondria is significantly faster, proving an active unfolding process. We conclude that access of mtHsp70 to N-terminal preprotein segments is critical for active unfolding and initiation of translocation.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Mitocôndrias/metabolismo , Dobramento de Proteína , Precursores de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Cinética , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase (Citocromo) , Camundongos , Mitocôndrias/genética , Mutação , Desnaturação Proteica/efeitos dos fármacos , Precursores de Proteínas/química , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Ureia/farmacologia
10.
EMBO J ; 20(5): 951-60, 2001 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11230119

RESUMO

The ADP/ATP carrier (AAC) is a major representative of mitochondrial preproteins lacking an N-terminal presequence. AAC contains targeting information in each of its three modules, which has led to a search for the dominant targeting region. An alternative, not yet tested model would be that several distinct targeting signals function simultaneously in import of the preprotein. We report that the three AAC modules cooperate in binding to the receptor Tom70 such that three Tom70 dimers are recruited to one preprotein. The modules are transferred to the import pore in a stepwise manner and cooperate again in the accumulation of AAC in the general import pore complex. AAC can cross the outer membrane with an internal segment first, i.e. in a loop formation. Each module of AAC is required for dimerization in the inner membrane. We propose a new concept for import of the hydrophobic carrier proteins into mitochondria where multiple signals cooperate in receptor recruitment, outer membrane translocation via loop formation and assembly in the inner membrane.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Dimerização , Proteínas Fúngicas/genética , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Metotrexato/farmacologia , Translocases Mitocondriais de ADP e ATP/genética , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Ligação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Succinimidas/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
11.
Nat Struct Biol ; 8(4): 361-70, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11276259

RESUMO

Proteins targeted to mitochondria are transported into the organelle through a high molecular weight complex called the translocase of the outer mitochondrial membrane (TOM). At the core of this machinery is a multisubunit general import pore (GIP) of 400 kDa. Here we report the assembly of the yeast GIP that involves two successive intermediates of 250 kDa and 100 kDa. The precursor of the channel-lining Tom40 is first targeted to the membrane via the receptor proteins Tom20 and Tom22; it then assembles with Tom5 to form the 250 kDa intermediate exposed to the intermembrane space. The 250 kDa intermediate is followed by the formation of the 100 kDa intermediate that associates with Tom6. Maturation to the 400 kDa complex occurs by association of Tom7 and Tom22. Tom7 functions by promoting both the dissociation of the 400 kDa complex and the transition from the 100 kDa intermediate to the mature complex. These results indicate that the dynamic conversion between the 400 kDa complex and the 100 kDa late intermediate allows integration of new precursor subunits into pre-existing complexes.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/química , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Receptores de Superfície Celular , Receptores Citoplasmáticos e Nucleares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Substâncias Macromoleculares , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais , Modelos Biológicos , Peso Molecular , Conformação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Subunidades Proteicas , Transporte Proteico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia
12.
J Cell Biol ; 152(2): 289-300, 2001 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-11266446

RESUMO

Porin, also termed the voltage-dependent anion channel, is the most abundant protein of the mitochondrial outer membrane. The process of import and assembly of the protein is known to be dependent on the surface receptor Tom20, but the requirement for other mitochondrial proteins remains controversial. We have used mitochondria from Neurospora crassa and Saccharomyces cerevisiae to analyze the import pathway of porin. Import of porin into isolated mitochondria in which the outer membrane has been opened is inhibited despite similar levels of Tom20 as in intact mitochondria. A matrix-destined precursor and the porin precursor compete for the same translocation sites in both normal mitochondria and mitochondria whose surface receptors have been removed, suggesting that both precursors utilize the general import pore. Using an assay established to monitor the assembly of in vitro-imported porin into preexisting porin complexes we have shown that besides Tom20, the biogenesis of porin depends on the central receptor Tom22, as well as Tom5 and Tom7 of the general import pore complex (translocase of the outer mitochondrial membrane [TOM] core complex). The characterization of two new mutant alleles of the essential pore protein Tom40 demonstrates that the import of porin also requires a functional Tom40. Moreover, the porin precursor can be cross-linked to Tom20, Tom22, and Tom40 on its import pathway. We conclude that import of porin does not proceed through the action of Tom20 alone, but requires an intact outer membrane and involves at least four more subunits of the TOM machinery, including the general import pore.


Assuntos
Membranas Intracelulares/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/fisiologia , Porinas/biossíntese , Receptores de Superfície Celular , Receptores Citoplasmáticos e Nucleares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Genótipo , Membranas Intracelulares/ultraestrutura , Cinética , Proteínas de Membrana/química , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neurospora crassa/genética , Neurospora crassa/fisiologia , Neurospora crassa/ultraestrutura , Porinas/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Canais de Ânion Dependentes de Voltagem
16.
Mol Biol Cell ; 11(11): 3977-91, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11071921

RESUMO

The transport of preproteins into or across the mitochondrial inner membrane requires the membrane potential Deltapsi across this membrane. Two roles of Deltapsi in the import of cleavable preproteins have been described: an electrophoretic effect on the positively charged matrix-targeting sequences and the activation of the translocase subunit Tim23. We report the unexpected finding that deletion of a segment within the sorting sequence of cytochrome b(2), which is located behind the matrix-targeting sequence, strongly influenced the Deltapsi-dependence of import. The differential Deltapsi-dependence was independent of the submitochondrial destination of the preprotein and was not attributable to the requirement for mitochondrial Hsp70 or Tim23. With a series of preprotein constructs, the net charge of the sorting sequence was altered, but the Deltapsi-dependence of import was not affected. These results suggested that the sorting sequence contributed to the import driving mechanism in a manner distinct from the two known roles of Deltapsi. Indeed, a charge-neutral amino acid exchange in the hydrophobic segment of the sorting sequence generated a preprotein with an even better import, i.e. one with lower Deltapsi-dependence than the wild-type preprotein. The sorting sequence functioned early in the import pathway since it strongly influenced the efficiency of translocation of the matrix-targeting sequence across the inner membrane. These results suggest a model whereby an electrophoretic effect of Deltapsi on the matrix-targeting sequence is complemented by an import-stimulating activity of the sorting sequence.


Assuntos
Matriz Extracelular/metabolismo , L-Lactato Desidrogenase/metabolismo , Potenciais da Membrana/fisiologia , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Sinais Direcionadores de Proteínas , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Proteínas de Choque Térmico HSP70/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase (Citocromo) , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Mutação , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Tetra-Hidrofolato Desidrogenase/efeitos dos fármacos , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Leveduras/efeitos dos fármacos , Leveduras/genética , Leveduras/metabolismo
17.
Biol Chem ; 381(9-10): 943-9, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11076025

RESUMO

Mitochondrial proteins are synthesized as precursor proteins in the cytosol and are posttranslationally imported into the organelle. A complex system of translocation machineries recognizes and transports the precursor polypeptide across the mitochondrial membranes. Energy for the translocation process is mainly supplied by the mitochondrial membrane potential (deltapsi) and the hydrolysis of ATP. Mitochondrial Hsp70 (mtHsp70) has been identified as the major ATPase driving the membrane transport of the precursor polypeptides into the mitochondrial matrix. Together with the partner proteins Tim44 and Mge1, mtHsp70 forms an import motor complex interacting with the incoming preproteins at the inner face of the inner membrane. This import motor complex drives the movement of the polypeptides in the translocation channel and the unfolding of carboxy-terminal parts of the preproteins on the outside of the outer membrane. Two models of the molecular mechanism of mtHsp70 during polypeptide translocation are discussed. In the 'trapping' model, precursor movement is generated by Brownian movement of the polypeptide chain in the translocation pore. This random movement is made vectorial by the interaction with mtHsp70 in the matrix. The detailed characterization of conditional mutants of the import motor complex provides the basis for an extended model. In this 'pulling' model, the attachment of mtHsp70 at the inner membrane via Tim44 and a conformational change induced by ATP results in the generation of an inward-directed force on the bound precursor polypeptide. This active role of the import motor complex is necessary for the translocation of proteins containing tightly folded domains. We suggest that both mechanisms complement each other to reach a high efficiency of preprotein import.


Assuntos
Mitocôndrias/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas/fisiologia , Animais , Proteínas de Choque Térmico/metabolismo , Humanos
18.
J Mol Biol ; 303(4): 479-88, 2000 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-11054285

RESUMO

The mitochondrial import receptor of 70 kDa, Tom70, preferentially recognizes precursors of membrane proteins with internal targeting signals. We report the identification of a stably folded 25 kDa core domain located in the middle portion of Tom70 that contains two of the seven tetratricopeptide repeat motifs of the receptor. The core domain binds non-cleavable and cleavable preproteins carrying internal targeting signals with a specificity indistinguishable from the full-length receptor. Competition studies indicate that both types of preproteins interact with overlapping binding sites of the core domain and that at least one additional interaction site is present in the full-length receptor. We suggest a model of Tom70 function in import of membrane proteins whereby a hydrophobic preprotein concomitantly interacts with several binding sites of the receptor.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ligação Competitiva/efeitos dos fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Peso Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Dobramento de Proteína , Precursores de Proteínas/química , Sinais Direcionadores de Proteínas/genética , Sinais Direcionadores de Proteínas/fisiologia , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Deleção de Sequência/genética , Especificidade por Substrato , Termodinâmica , Tripsina/metabolismo
19.
Mol Cell Biol ; 20(16): 5879-87, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10913171

RESUMO

The import motor for preproteins that are targeted into the mitochondrial matrix consists of the matrix heat shock protein Hsp70 (mtHsp70) and the translocase subunit Tim44 of the inner membrane. mtHsp70 interacts with Tim44 in an ATP-dependent reaction cycle, binds to preproteins in transit, and drives their translocation into the matrix. While different functional mechanisms are discussed for the mtHsp70-Tim44 machinery, little is known about the actual mode of interaction of both proteins. Here, we have addressed which of the three Hsp70 regions, the ATPase domain, the peptide binding domain, or the carboxy-terminal segment, are required for the interaction with Tim44. By two independent means, a two-hybrid system and coprecipitation of mtHsp70 constructs imported into mitochondria, we show that the ATPase domain interacts with Tim44, although with a reduced efficiency compared to the full-length mtHsp70. The interaction of the ATPase domain with Tim44 is ATP sensitive. The peptide binding domain and carboxy-terminal segment are unable to bind to Tim44 in the absence of the ATPase domain, but both regions enhance the interaction with Tim44 in the presence of the ATPase domain. We conclude that the ATPase domain of mtHsp70 is essential for and directly interacts with Tim44, clearly separating the mtHsp70-Tim44 interaction from the mtHsp70-substrate interaction.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Membrana/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Ligação Proteica , Saccharomyces cerevisiae
20.
Curr Biol ; 10(11): R412-5, 2000 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-10837244

RESUMO

The mitochondrial protein import machinery specifically recognizes many different preproteins lacking a consensus sequence. The three-dimensional structure of an import receptor complexed to an amino-terminal targeting 'presequence' provides exciting insight into the molecular mechanism of signal recognition.


Assuntos
Membranas Intracelulares/fisiologia , Mitocôndrias/fisiologia , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Sequência de Aminoácidos , Animais , Membranas Intracelulares/ultraestrutura , Mitocôndrias/ultraestrutura , Modelos Biológicos , Conformação Proteica , Precursores de Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA