Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geophys Res Lett ; 49(2): e2021GL096335, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35860603

RESUMO

Shock waves in collisionless plasmas are among the most efficient particle accelerators in space. Shock reformation is a process important to plasma heating and acceleration, but direct observations of reformation at quasi-parallel shocks have been lacking. Here, we investigate Earth's quasi-parallel bow shock with observations by the four Magnetospheric Multiscale spacecraft. The multi-spacecraft observations provide evidence of short large-amplitude magnetic structures (SLAMS) causing reformation of the quasi-parallel shock. We perform an ion-kinetic Vlasiator simulation of the bow shock and show that SLAMS reforming the bow shock recreates the multi-spacecraft measurements. This provides a method for identifying shock reformation in the future.

2.
Geophys Res Lett ; 49(19): e2022GL100079, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36591573

RESUMO

Solar wind-magnetosphere coupling drives magnetospheric dynamic phenomena by enabling energy exchange between magnetospheric and solar wind plasmas. In this study, we examine two-dimensional noon-midnight meridional plane simulation runs of the global hybrid-Vlasov code Vlasiator with southward interplanetary magnetic field driving. We compute the energy flux, which consists of the Poynting flux and hydrodynamic energy flux components, through the Earth's magnetopause during flux transfer events (FTEs). The results demonstrate the spatiotemporal variations of the energy flux along the magnetopause during an FTE, associating the FTE leading (trailing) edge with an energy injection into (escape from) the magnetosphere on the dayside. Furthermore, FTEs traveling along the magnetopause transport energy to the nightside magnetosphere. We identify the tail lobes as a primary entry region for solar wind energy into the magnetosphere, consistent with results from global magnetohydrodynamic simulations and observations.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30680308

RESUMO

This paper reviews Vlasov-based numerical methods used to model plasma in space physics and astrophysics. Plasma consists of collectively behaving charged particles that form the major part of baryonic matter in the Universe. Many concepts ranging from our own planetary environment to the Solar system and beyond can be understood in terms of kinetic plasma physics, represented by the Vlasov equation. We introduce the physical basis for the Vlasov system, and then outline the associated numerical methods that are typically used. A particular application of the Vlasov system is Vlasiator, the world's first global hybrid-Vlasov simulation for the Earth's magnetic domain, the magnetosphere. We introduce the design strategies for Vlasiator and outline its numerical concepts ranging from solvers to coupling schemes. We review Vlasiator's parallelisation methods and introduce the used high-performance computing (HPC) techniques. A short review of verification, validation and physical results is included. The purpose of the paper is to present the Vlasov system and introduce an example implementation, and to illustrate that even with massive computational challenges, an accurate description of physics can be rewarding in itself and significantly advance our understanding. Upcoming supercomputing resources are making similar efforts feasible in other fields as well, making our design options relevant for others facing similar challenges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...