Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Microbiol Methods ; 221: 106942, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704038

RESUMO

Methylation analysis was performed on methylated alditol acetate standards and Streptococcus mutans extracellular polymeric substances (EPS) produced from wild-type and Gtf knockout strains (∆GtfB, ∆GtfB, and ∆GtfD). The methylated alditol acetate standards were representative of glycosidic linkages found in S. mutans EPS and were used to calibrate the GC-MS system for an FID detector and MS (TIC) and produce molar response factor, a necessary step in quantitative analysis. FID response factors were consistent with literature values (Sweet et al., 1975) and found to be the superior option for quantitative results, although the TIC response factors now give researchers without access to an FID detector a needed option for molar response factor correction. The GC-MS analysis is then used to deliver the ratio of the linkage types within a biofilm.

2.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873282

RESUMO

The human microbiome is predominantly composed of facultative and obligate anaerobic bacteria that live in hypoxic/anoxic polymicrobial biofilm communities. Given the oxidative sensitivity of large fractions of the human microbiota, green fluorescent protein (GFP) and related genetically-encoded fluorophores only offer limited utility for live cell imaging due the oxygen requirement for chromophore maturation. Consequently, new fluorescent imaging modalities are needed to study polymicrobial interactions and microbiome-host interactions within anaerobic environments. The fluorescence-activating and absorption shifting tag (FAST) is a rapidly developing genetically-encoded fluorescent imaging technology that exhibits tremendous potential to address this need. In the FAST system, fluorescence only occurs when the FAST protein is complexed with one of a suite of cognate small molecule fluorogens. To expand the utility of FAST imaging, we sought to develop a modular platform (Click-FAST) to democratize fluorogen engineering for personalized use cases. Using Click-FAST, investigators can quickly and affordably sample a vast chemical space of compounds, potentially imparting a broad range of desired functionalities to the parental fluorogen. In this work, we demonstrate the utility of the Click-FAST platform using a novel fluorogen, PLBlaze-alkyne, which incorporates the widely available small molecule ethylvanillin as the hydroxybenzylidine head group. Different azido reagents were clicked onto PLBlaze-alkyne and shown to impart useful characteristics to the fluorogen, such as selective bacterial labeling in mixed populations as well as fluorescent signal enhancement. Conjugation of an 80 Å PEG molecule to PLBlaze-alkyne illustrates the broad size range of functional fluorogen chimeras that can be employed. This PEGylated fluorogen also functions as an exquisitely selective membrane permeability marker capable of outperforming propidium iodide as a fluorescent marker of cell viability.

3.
Sci Rep ; 13(1): 11889, 2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37482546

RESUMO

Streptococcus mutans is the primary oral caries-forming bacteria, adept at producing "sticky" biofilms via the synthesis of insoluble extracellular polysaccharides (EPS), catalyzed by glucosyltransferases (GTFs). To circumvent the use of broad-spectrum antibiotics to combat these bacteria, this study sought to modify existing EPS-targeting small molecules with the ultimate goal of producing anti-biofilm polymer surfaces specifically targeting S. mutans. To achieve this, a known GTF inhibitor (G43) was modified with methoxy or tetraethyleneglycol substitutions in different positions (nine derivatives, tested at 50-µM) to pinpoint potential sites for future methacrylate functionalization, and then assessed against single-species S. mutans biofilms. As expected, the compounds did not diminish the bacterial viability. In general, the compounds with methoxy substitution were not effective in reducing EPS formation, whereas the tetraethyleneglycol substitution (G43-C3-TEG) led to a decrease in the concentration of insoluble EPS, although the effect is less pronounced than for the parent G43. This aligns with the reduced GTF-C activity observed at different concentrations of G43-C3-TEG, as well as the consequent decrease in EPS formation, and notable structural changes. In summary, this study determined that G43-C3-TEG is non-bactericidal and can selectively reduce the biofilm formation, by decreasing the production of EPS. This molecule will serve to functionalize surfaces of materials to be tested in future research.


Assuntos
Biofilmes , Cárie Dentária , Humanos , Streptococcus mutans , Polissacarídeos/farmacologia , Glucosiltransferases , Materiais Dentários
4.
ACS Omega ; 8(10): 9356-9363, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936287

RESUMO

A careful analysis of two (thiol-disulfide exchange) thiol quantification chromophores' behavior (Ellman's reagent and Aldrithiol-4) in nonaqueous solvents is presented. A wide range of kinetic profiles and response factors were measured to exhibit a large variance for nonaqueous systems. We report several robust benchtop and room-temperature methods using different organic solvents compared to aqueous conditions. Validation of analytical analyses in nonaqueous systems and quantification of the cysteine content of ovalbumin are also presented. This work serves as a treatise on the utilization of thiol-disulfide exchange chromophores under nonaqueous conditions for the quantification of thiols.

5.
Mater Des ; 2232022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381607

RESUMO

Over the last years, research on the design of dental self-healing polymers has grown dramatically. It is related to the promising potential of maximizing the clinical lifespan of dental restorations that this strategy holds. In this manuscript, the microcapsule-based strategy is innovated by incorporating the high toughness component N,N-Dimethylacrylamide (DMAM) into the healing agent systems and analyzing in-depth the change in crack propagation behavior induced by the addition of microcapsules into the highly crosslinked polymeric network. In general, the addition of the hydrophilic and high vapor pressure DMAM into the healing agent systems imposed a challenge for the microencapsulation, which highlighted the importance of tailoring the properties of the capsules' shells according to the core composition. The addition of DMAM as cushioning agent proved to be a successful strategy since it resulted in increased G'/G" crossover time from 0.06 (control) to 0.57 s and decreased storage modulus from 8.0 (control) to 0.5GPa. In addition, the incorporation of microcapsules within the polymerized networks provided obstacles to crack propagation, which translated to an overall reinforcement of the polymeric network, as evidenced by the increase in toughness up to 50 % and energy required to propagate cracks up to 100 % in systems containing DMAM at 20 wt%.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36721424

RESUMO

Objectives: For many years, the requirements for dental polymers were limited to inertially filling the cavity and restoring form, function, and esthetics. Inorganic filler systems were widely enhanced to maximize the mechanical properties and optimize finishing and polishing procedures. The development of alternative photoinitiator systems also improved the carbon-carbon double bond conversion, increasing biocompatibility, wear, and stain resistance. However, despite laudable progress, the clinical life span of dental restorations is still limited, and their replacement is the most common procedure in dental offices worldwide. In the last few years, the development of materials with the potential to adapt to physiological stimuli has emerged as a key step to elevating dental polymers to a higher excellence level. In this context, using polymeric networks with self-healing properties that allow for the control of the propagation of microcracks is an appealing strategy to boost the lifetime of dental restorations. This review aims to report the current state-of-the-art of extrinsic self-healing dental polymers and provide insights to open new avenues for further developments. General classification of the self-healing polymeric systems focusing on the current extrinsic strategies used to inhibit microcracks propagation in dental polymers and recover their structural integrity and toughness are presented. Search Strategy: An electronic search was perfomed using PubMed, Google Scholar, and Scopus databases. Only studies published in English on extrinsic self-healing polymeric systems were included. Overall Conclusions: Self-healing materials are still in their infancy in dentistry, and the future possibilities are almost limitless. Although the mouth is a unique environment and the restorative materials have to survive chemical, physical, and mechanical challenges, which limits the use of some strategies that might compromise their physicochemical performance, there are countless untapped opportunities to overcome the challenges of the current systems and advance the field.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36721425

RESUMO

Objectives: The development of thermosetting polymers with autonomic reparability has become an important research topic since it has the potential to benefit several fields such as biomaterials, tissue engineering, paint and coating technologies, electronics, and soft robotics. In dentistry, the development of restorative materials capable of inhibiting the propagation of microcracks caused by masticatory forces and thermal stress may represent a crucial expansion of the limited clinical lifespan of dental restorations, which is a pressing challenge. Biological systems have inspired the underlying concepts and designs of synthetic polymeric self-healing systems, and different strategies have been used to impart autonomous repair capability in polymers. In this review, the most relevant intrinsic strategies are categorized based on the reaction mechanisms. In general, these strategies rely on the incorporation of latent functionalities capable of undergoing reversible chemical bonds within the polymeric structure (chemically or compositionally tuned). Search Strategy: The searches were conducted in the databases Scopus, PubMed, and Google Scholar and limited to articles that were written in English and published during the last ten years. A few additional articles were included by complementing the database searches with manual review of the reference lists. Overall Conclusions: Although intrinsic approaches remain underexplored in dentistry, a wide variety of elegant chemistries with tremendous translational potential employed in other fields to promote autonomic repair are highlighted in this review.

9.
Dent J (Basel) ; 9(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34435995

RESUMO

How dentists cure a resin-based material has deleterious effects on the material's properties and its interaction with surrounding dental tissues. Biofilm accumulation has been implicated in the pathogenesis of carious lesions around dental restorations, with its composition manifesting expressed dysbiosis in patients suffering from dental caries. To evaluate the influence of varying radiant exposure on the degree of conversion (DC%), Streptococcus mutans biofilm growth, and surface roughness of bulk-fill composites under different light-curing conditions. Two light-curing units (LCU) at 600 and 1000 mW/cm2 were used to simulate curing conditions with different angulations (∢20° and ∢35°) or 2 mm-distance displacements of the LCU tip. The radiant exposure (RE) was assessed, and the composites were analyzed for DC%. Biofilm formation was induced over the bulk-fill composites and analyzed via colony-forming units counting and scanning electron microscopy (SEM). The surface roughness was analyzed via a profilometer and SEM after biofilm formation. Curing conditions with different angulation or displacement decreased RE compared to the "optimal condition". The moderately (∢35°) angulated LCU tip and low (600 mW/cm2) radiant emittance significantly reduced the DC% (p < 0.05). The difference in DC% between the top and bottom of the composites ranged from 8 to 11% for 600 mW/cm2 and 10 to 20% for 1000 mW/cm2. Greater S. mutans biofilm and surface changes were found in composites with non-optimal RE delivery (e.g., tip displacement and angulation) (p < 0.05). Inadequate polymerization of bulk-fill composites was associated with more biofilm accumulation and surface topography changes. Overall, non-optimally performed curing procedures reduced the amount of delivered RE, which led to low DC%, more biofilm formation, and higher surface roughness. The improper light-curing of bulk-fill composites compromises their physicochemical and biological properties, which could lead to inferior clinical performance and reduced restorative treatments' longevity.

10.
Dent Mater ; 37(10): 1569-1575, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34407920

RESUMO

OBJECTIVE: The use of resin cements in clinical practice entails photopolymerization through prosthetic devices, which precludes light penetration. The objective of this study was to modify experimental resin cements (ERCs) with diphenyliodonium hexafluorophosphate (DPI) in an attempt to improve chemical and mechanical properties of materials cured with reduced irradiance and final radiant exposure. METHODS: A co-monomer base containing a 1:1 mass ratio of 2.2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (bis-GMA) and triethyleneglycol dimethacrylate (TEGDMA) was prepared, with 1mol% of camphorquinone and 2mol% of ethyl 4-(dimethylamino)benzoate as initiator system. The resin was divided into 4 fractions according to the DPI concentrations (0, 0.5, 1 and 2mol%). The challenging polymerization condition was simulated performing the light activation (12, 23 and 46s) through a ceramic block (3mm thick). The irradiance was assessed with a calibrated spectrometer (1320mW/cm2), resulting in three levels of radiant exposure (0.58, 1.1 and 2.2J/cm2). The polymerization kinetics was evaluated in real-time using a spectrometer (Near-IR). Water sorption and solubility was analyzed and the cohesive strength of resins obtained through the microtensile test. Polymerization stress was assessed by Bioman method. RESULTS: Resins containing DPI had higher degree of conversion and rate of polymerization than the control (without DPI). The use of DPI reduced water sorption and solubility, and led to higher cohesive strength compared to resins without the iodonium salt. However, the stress of polymerization was higher for experimental resins with DPI. SIGNIFICANCE: Even under remarkably reduced irradiance, cements containing a ternary initiating system with an iodonium salt can present an optimal degree of conversion and chemical/mechanical properties.


Assuntos
Metacrilatos , Cimentos de Resina , Bis-Fenol A-Glicidil Metacrilato , Resinas Compostas , Teste de Materiais , Polimerização
11.
Dent Mater ; 37(5): 805-815, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33663882

RESUMO

The stability of the bond between polymeric adhesives to mineralized substrates is crucial in many biomedical applications. The objective of this study was to determine the effect of methyl substitution at the α- and ß-carbons on the kinetics of polymerization, monomer hydrolytic stability, and long-term bond strength to dentin for methacrylamide- and methacrylate-based crosslinked networks for dental adhesive applications. METHODS: Secondary methacrylamides (α-CH3 substituted=1-methyl HEMAM, ß-CH3 substituted=2-methyl HEMAM, and unsubstituted=HEMAM) and OH-terminated methacrylates (α- and ß-CH3 mixture=1-methyl HEMA and 2-methyl HEMA, and unsubstituted=HEMA) were copolymerized with urethane dimethacrylate. The kinetics of photopolymerization were followed in real-time using near-IR spectroscopy. Monomer hydrolysis kinetics were followed by NMR spectroscopy in water at pH 1 over 30 days. Solvated adhesives (40 vol% ethanol) were used to bond composite to dentin and microtensile bond strength (µTBS) measured after 24h and 6 months storage in water at 37°C. RESULTS: The rate of polymerization increased in the following order: OH-terminated methacrylates≥methacrylamides>NH2-terminated methacrylates, with minimal effect of the substitution. Final conversion ranged between 79% for 1-methyl AEMA and 94% for HEMA. 1-methyl-HEMAM showed the highest and most stable µTBS, while HEMA showed a 37% reduction after six months All groups showed measurable degradation after up to 4 days in pH 1, with the methacrylamides showing less degradation than the methacrylates. Additionally, transesterification products were observed in the methacrylamide groups. SIGNIFICANCE: Amide monomers were significantly more stable to hydrolysis than the analogous methacrylates. The addition of a α- or ß-CH3 groups increased the rate of hydrolysis, with the magnitude of the effect tracking with the expected base-catalyzed hydrolysis of esters or amides, but opposite in influence. The α-CH3 substituted secondary methacrylamide, 1-methyl HEMAM, showed the most stable adhesive interface. A side reaction was observed with transesterification of the monomers studied under ambient conditions, which was not expected under the relatively mild conditions used here, which warrants further investigation.


Assuntos
Colagem Dentária , Acrilamidas , Resinas Compostas , Cimentos Dentários , Dentina , Adesivos Dentinários , Teste de Materiais , Metacrilatos , Metilação , Cimentos de Resina , Resistência à Tração
12.
Braz Dent J ; 31(5): 523-531, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33146337

RESUMO

Thiourethane additives have been shown to improve properties in several dental polymer applications. The aim of this study was to verify the effect of the addition of thiourethane oligomers and acrylamide or isobornyl-based plasticizers on the physical properties of the denture base acrylic resin polymerized with microwaves. Thiourethane oligomer (TU) was synthetized and added to microwaved acrylic resin in proportions varying between 3 and 14 wt%. Separate experimental groups included the addition of dimethyl acrylamide (DMAM) and isobornyl methacrylate as plasticizers, at concentrations varying from 5 to 20 wt%. Samples were polymerized using microwave energy at 500 Watts for 3 min, deflasked at room temperature, stored in water at 37 °C for 24 h, and evaluated for: linear dimensional change, gloss, Knoop hardness, surface roughness, impact strength, yield strength, elastic modulus, toughness, yield strength, viscosity, glass transition temperature and network heterogeneity, and water sorption/solubility. Data were analyzed with ANOVA/Tukey's post-hoc test (a=5%). The addition of TU led to properties that were similar or worse than the materials to which it was not added, except for dimensional stability. The impact on properties was statistically significant for all materials above 20% addition of TU. The addition of DMAM at 5 wt% or isobornyl methacrylate at 10 wt% improved yield strength and modulus, but increased water sorption and solubility. Except for dimensional stability, the addition of thiourethane oligomers to acrylic denture base materials compromised most tested properties. The use of DMAM and isobornyl methacrylate improved properties for selected compositions.


Assuntos
Bases de Dentadura , Micro-Ondas , Materiais Dentários , Teste de Materiais , Polimerização , Polimetil Metacrilato , Propriedades de Superfície
13.
Braz. dent. j ; 31(5): 523-531, Sept.-Oct. 2020. tab
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1132329

RESUMO

Abstract Thiourethane additives have been shown to improve properties in several dental polymer applications. The aim of this study was to verify the effect of the addition of thiourethane oligomers and acrylamide or isobornyl-based plasticizers on the physical properties of the denture base acrylic resin polymerized with microwaves. Thiourethane oligomer (TU) was synthetized and added to microwaved acrylic resin in proportions varying between 3 and 14 wt%. Separate experimental groups included the addition of dimethyl acrylamide (DMAM) and isobornyl methacrylate as plasticizers, at concentrations varying from 5 to 20 wt%. Samples were polymerized using microwave energy at 500 Watts for 3 min, deflasked at room temperature, stored in water at 37 °C for 24 h, and evaluated for: linear dimensional change, gloss, Knoop hardness, surface roughness, impact strength, yield strength, elastic modulus, toughness, yield strength, viscosity, glass transition temperature and network heterogeneity, and water sorption/solubility. Data were analyzed with ANOVA/Tukey's post-hoc test (a=5%). The addition of TU led to properties that were similar or worse than the materials to which it was not added, except for dimensional stability. The impact on properties was statistically significant for all materials above 20% addition of TU. The addition of DMAM at 5 wt% or isobornyl methacrylate at 10 wt% improved yield strength and modulus, but increased water sorption and solubility. Except for dimensional stability, the addition of thiourethane oligomers to acrylic denture base materials compromised most tested properties. The use of DMAM and isobornyl methacrylate improved properties for selected compositions.


Resumo Aditivos de tiouretano demonstraram melhorar propriedades de polímeros em diversas aplicações. O objetivo deste estudo foi verificar o efeito da adição de oligômeros de tiouretano, monômeros de acrilamida ou baseados em funcionalidade isobornil na propriedades físicas de bases de dentadura de acrílico polimerizadas em micro-ondas. O oligômero de tiouretano (TU) foi sintetizado e adicionado à resina acrílica em proporções variando de 3 a 14% em peso. Dimetil acrilamida (DMAM) e isobornil metacrilato (IBMA) foram adicionados em formulações separadas como plastificantes em concentrações variando de 5 a 20% em peso. As amostras foram polimerizadas usando energia de micro-ondas (500 Watts oor 3 min), desincluídas da mufla a temperature ambiente, armazenadas em água a 37°C por 24 h, e submetidas aos testes de: alteração dimensional linear, brilho, dureza Knoop, rugosidade superficial, resistência ao impacto, tensão normal de escoamento, módulo de elasticidade, tenacidade, viscosidade, temperatura de transição vítrea e heterogeneidade da rede polimérica, além de sorção de água e solubilidade. Os dados foram analisados com ANOVA e teste de Tukey (a=5%). A adição de TU não afetou ou diminuiu todas as propriedades, exceto pela estabilidade dimensional. O impacto nas propriedades foi estatisticamente significante para todos os materiais em concentrações acima de 20% de TU. Isso pode ser explicado por um encurtamento das cadeias e diminuição do empacotamento das cadeias lineares do PMMA. A adição de 5% de DMAM ou 10% de isobornil metacrilato melhoraram a tensão de escoamento e o módulo, mas aumentaram a sorção de água e solubilidade. Exceto pela estabilidade dimensional, a adição de oligômeros de tiouretano à bases de dentatura compostas por resina acrílica prejudicou todas a propriedades testadas. O uso de DMAM e isobornil metacrilato melhorou as propriedades para composições selecionadas.


Assuntos
Bases de Dentadura , Micro-Ondas , Propriedades de Superfície , Teste de Materiais , Polimetil Metacrilato , Materiais Dentários , Polimerização
14.
Acta Biomater ; 115: 148-159, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853802

RESUMO

PURPOSE/AIM: In an attempt to increase the service life of dental adhesive interfaces, more hydrolytically and enzymatically-stable methacrylate alternatives, such as methacrylamides, have been proposed. The aim of this study was to investigate polymerization behavior, as well as mechanical and biological properties of experimental adhesives containing multi-functional acrylamides. MATERIALS AND METHODS: Multi-functional acrylamides (N,N-Bis[(3-methylaminoacryl)propyl]methylamine - BMAAPMA, Tris[(2-methylaminoacryl)ethyl]amine - TMAAEA, N,N'-bis(acrylamido) 1,4-diazepane - BAADA, N,N-Diethyl-1,3-bis(acrylamido)propane - DEBAAP) or HEMA (2-Hydroxyethyl methacrylate - control) were added at 40 wt% to UDMA. 0.2 wt% DMPA and 0.4 wt% DPI-PF6 were used as initiators. Polymerization kinetics was followed in real-time in near-IR during photoactivation (320-500 nm, at 630 mW/cm2). Water sorption/solubility and flexural strength/modulus were measured according to ISO 4049. 1H NMR was used to assess monomer degradation kinetics. MTT assay was used to assess cytotoxicity against OD-21 and DPSC cells. Biofilm formation and adhesion were assessed by Luciferase Assay and Impingement technique, respectively. Solvated adhesives (40 vol% ethanol) were used to test interfacial adhesion strength. The results were analyzed by ANOVA/Tukey's test (α = 0.05). RESULTS: In general, the pure methacrylate mixture had higher rate of polymerization (Rpmax), degree of conversion (DC) at Rpmax, and final DC than the acrylamides. Flexural properties after water storage decreased between 11 and 65%, more markedly for acrylamides. Interfacial bond strength was greater and more stable long-term for the newly synthesized acrylamide formulations (less than 4% reduction at 6 months) compared to the methacrylate experimental control (42% reduction at 6 months). HEMA degraded by almost 90%, while the acrylamides showed no degradation in acidic conditions. Cytotoxicity and biofilm formation, in general, were similar for all groups. CONCLUSIONS: Despite demonstrating high water sorption, the acrylamide-containing materials had similar mechanical and biological properties and enhanced interfacial bond strength stability compared to the methacrylate control.


Assuntos
Resinas Compostas , Colagem Dentária , Aminas , Bis-Fenol A-Glicidil Metacrilato , Cimentos Dentários , Teste de Materiais , Metacrilatos , Polimerização , Cimentos de Resina
15.
Dent Mater ; 36(10): e293-e301, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32636077

RESUMO

OBJECTIVE: This study evaluated the properties of experimental dual-cured cements containing thiourethane (TU) and low concentrations of p-Tolyldiethanolamnie (DHEPT) and benzoyl peroxide (BPO) as chemical initiators. METHODS: BisGMA/TEGDMA-based dual-cured cement was formulated with 1.0 wt% DHEPT and 0.75 wt% BPO as initiators and used as control. The concentration of BPO was adjusted to 0.1 wt% in catalyst paste of experimental cements, and two base pastes containing TU and 0.5 wt% or 0.25 wt% of DHEPT were formulated. The rheological behavior and kinetics of polymerization of cements were assessed in the absence of light activation. The kinetics of polymerization was also evaluated for cements light-activated immediately or 5 min after the start of mixing. Polymerization stress, flexural strength and elastic modulus (n = 5) were also evaluated under these conditions. RESULTS: Cements with TU presented lower viscosity than the control, improved working time (0.25% DHEPT > 0.5% DHEPT) and higher conversion in the absence of light-activation. Delaying the light-activation reduced the maximum rate of polymerization (Rpmax) but did not affect the conversion or stress. The addition of TU increased the Rpmax and conversion, and reduced the stress when compared to the control, without affecting the flexural strength. Except for the control with delayed light-activation (highest values), the other experimental conditions yielded similar modulus. SIGNIFICANCE: Adding TU and using a low concentration of DHEPT/BPO resulted in dual-cured cements with longer working time, reduced polymerization stress and increased conversion even in the absence of light, with no significant effect on the mechanical properties.


Assuntos
Cimentos de Resina , Bis-Fenol A-Glicidil Metacrilato , Teste de Materiais , Polimerização , Estresse Mecânico , Tempo
16.
Dent Mater ; 36(8): 1028-1037, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32536589

RESUMO

OBJECTIVES: The susceptibility of methacrylates to hydrolytic and enzymatic degradation may be a contributing factor limiting the clinical lifespan of resin composite restorations. The elimination of labile ester bonds is a potential advantage of methacrylamides, which have been shown to produce more stable restorative interfaces. The rationale of this study is to design hydrolytically and enzymatically stable adhesive monomers, with the added benefit of being able to form crosslinked networks. The objective of this study was to synthesize difunctional, hybrid methacrylate-methacrylamide monomers, and evaluate them as potential monomers for dental adhesives. MATERIALS AND METHODS: HEMA, TEGDMA (controls) or secondary methacrylamides (HEMAM - commercially available, 2EM and 2dMM - newly synthesized) either bearing a hydroxyl group or a methacrylate functionality (Hybrids-Hy), were added at 40mass% to bisGMA. The photoinitiator system consisted of 2-dimethoxyphenyl acetophenone (DMPA) and diphenyl iodonium hexafluorophosphate (DPI-PF6) at 0.2 and 0.4mass%, respectively. Polymerization kinetics were followed in real-time by near-IR spectroscopy during light activation at 630mW/cm2 for 300s. Water sorption and solubility (WS, SL) were measured according to ISO 4049. Storage modulus in shear (G') for 300s was obtained by oscillatory rheometry. For the microtensile bond strength (µTBS), fully formulated adhesives containing 40vol% ethanol were used to restore caries-free human third molars. Bonded specimens with 1mm2 cross-sectional area were tested after 48h and 6 months storage in water at 37°C. Single bond (SB) was tested as a commercial control. Data were analysed with one-way ANOVA and Tukey's test and Student's t-test (α=0.05). RESULTS: In general, hybrid versions showed lower polymerization rate and degree of conversion, whereas the methacrylate controls, HEMA and TEGDMA, showed the highest values. The hybrid versions showed lower values of WS and SL than their monofunctional versions. HEMAM Hy showed the highest values of G' and TEGDMA, 2EM, and 2dMM-Hy the lowest. The µTBS values between 48h and 6 months were statistically reduced only for the HEMA and both 2dMM materials. The formulation containing the monofunctional methacrylamide (HEMAM) showed only 9% reduction in µTBS after 6 months of aging, while the other groups showed a decrease ranging between 18% and 33%. CONCLUSION: Overall, hybrid monomers showed lower reactivity than their analogous monofunctional versions, but had markedly lower water sorption. Shear storage modulus was affected differently by the addition of the second functionality. HEMAM-containing systems were able to maintain stable long-term dentin bond strength, which demonstrates that bonding stability is a result of the complex interplay among the factors studied. CLINICAL SIGNIFICANCE: The novel monomers showed here are potential alternatives to the current methacrylate adhesives, with selected formulations presenting greater bond stability.


Assuntos
Colagem Dentária , Metacrilatos , Acrilamidas , Bis-Fenol A-Glicidil Metacrilato , Resinas Compostas , Cimentos Dentários , Dentina , Humanos , Teste de Materiais , Cimentos de Resina , Resistência à Tração
17.
Dent Mater ; 36(7): 884-892, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32402514

RESUMO

OBJECTIVE: Water sorption, high volumetric shrinkage, polymerization stress, and potential estrogenic effects triggered by leached compounds are some of the major concerns related to BisGMA-TEGDMA co-monomer systems used in dental composites. These deficiencies call for the development of alternative organic matrices in order to maximize the clinical lifespan of resin composite dental restorations. This study proposes BisGMA-free systems based on the combination of UDMA and a newly synthesized diurethane dimethacrylate, and evaluates key mechanical and physical properties of the resulting materials. METHODS: 2EMATE-BDI (2-hydroxy-1-ethyl methacrylate) was synthesized by the reaction between 2-hydroxy-1-ethyl methacrylate with a difunctional isocyanate (1.3-bis (1- isocyanato-1-methylethylbenzene) - BDI). The compound was copolymerized with UDMA (urethane dimethacrylate) at 40 and 60wt%. UDMA copolymerizations with 40 and 60wt% TEGDMA (triethylene glycol dimethacrylate) were tested as controls, as well as a formulation based in BisGMA (bisphenol A-glycidyl methacrylate)-TEGDMA 60:40% (BT). The organic matrices were made polymerizable by the addition of DMPA (2.2-dimethoxyphenoxy acetophenone) and DPI-PF6 (diphenyliodonium hexafluorophosphate) at 0.2 and 0.4wt%, respectively. Formulations were tested as composite with the addition of 70wt% inorganic content consisting of barium borosilicate glass (0.7µm) and fumed silica mixed in 95 and 5wt%, respectively. All photocuring procedures were carried out by a mercury arc lamp filtered to 320-500nm at 800mW/cm2. The experimental resin composites were tested for kinetics of polymerization and polymerization stress in real time. Flexural strength, elastic modulus, water sorption, and solubility were assessed according to ISO 4049. Biofilm formation was analyzed after 24h by luciferase assay. Data were statistically analyzed by one-way ANOVA and Tukey's test (α≤0.05). RESULTS: In general, the addition of 2EMATE-BDI into the formulations decreased the maximum rate of polymerization (RPMAX), the degree of conversion at RPMAX (DC at RPMAX), and the final degree of conversion (final DC). However, these reductions did not compromise mechanical properties, which were comparable to the BT controls, especially after 7-day water incubation. The incorporation of 60wt% 2EMATE-BDI reduced water sorption of the composite. 2EMATE-BDI containing formulations showed reduction in polymerization stress of 30% and 50% in comparison to BT control and TEGDMA copolymerizations, respectively. Biofilm formation was similar among the tested groups. SIGNIFICANCE: The use of the newly synthesized diurethane dimethacrylate as co-monomer in dental resin composite formulations seems to be a promising option to develop polymers with low-shrinkage and potentially decreased water degradation.


Assuntos
Resinas Compostas , Metacrilatos , Bis-Fenol A-Glicidil Metacrilato , Módulo de Elasticidade , Teste de Materiais , Polietilenoglicóis , Polimerização , Ácidos Polimetacrílicos
18.
Eur Polym J ; 1302020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32405085

RESUMO

OBJECTIVES: The incorporation of thiourethane-based oligomeric additives into resin composite formulations leads to improvement in mechanical properties and reduction in polymerization stress, but may increase viscosity. The objective of this study was to functionalize filler particle surfaces with thiourethane silane molecules and determine the impact of the inorganic filler loading and surface treatment on the behavior of experimental resin composites with systematically-varied organic matrices. METHODS: Thiourethane oligomer was synthesized de novo, and grafted to the surface of 0.7um barium glass. BisGMA and TEGDMA (BT) were combined (at 30:70, 50:50 or 70:30 wt%) to 50 or 75 wt% of methacrylate (MA-Sil - control) or thiourethane-silanized (TU-Sil) particles. Composites were made polymerizable by the addition of 0.2 wt% BAPO and 0.05 wt% BHT was added as inhibitor. A mercury arc lamp (320-500 nm) at 800 mW/cm2 was used for all curing procedures. Kinetics of polymerization was assessed by near-IR spectroscopy in real time. Polymerization stress was determined with a cantilever system in real time (Bioman). Flexural modulus and strength were determined in 3-point bending (25x2x2 mm). Water sorption and solubility and film thickness were tested according to ISO 4049. Polymeric network characteristics were analyzed by dynamic mechanical analysis (DMA). Data was analyzed with two-way ANOVA/Tukey's test (95%). RESULTS: Viscosity increased with the increase in BisGMA and/or filler amounts. Overall, TU-Sil containing composites showed delayed vitrification and higher final DC. Filler concentration did not affect DC neither flexural strength. DC decreased with increasing BisGMA content. Polymerization stress reduced and flexural modulus increased for higher filler content, especially for formulations containing TU-Sil particles. The water stability was positively affected by the increase in amount of BisGMA and inorganic filler particles. In terms of polymeric network, the addition of TU-Sil particles increased the Tg and decreased the E' and cross-link density. CONCLUSIONS: With the exception of flexural modulus, all tested properties were significantly impacted by the matrix viscosity and/or the addition of TU-Sil filler particles. In general, the use of thiourethane oligomers as a silane coupling agent was able to reinforce the materials and reduce the polymerization stress without negatively affecting the viscosity of the system.

19.
J Appl Polym Sci ; 136(25)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31736511

RESUMO

Thiourethane oligomers added to methacrylate matrices improve fracture toughness and reduce polymerization stress. In this study, the oligomers are added to the surface of inorganic fillers in the formulation of resin composites. Systematically varied fillers treated either with the thiourethane or a methacrylate silane control are tested. Thiourethane reduces the rate of polymerization of light-cured composites but does not affect the final degree of conversion (DC). Filler functionalization with thiourethane increases the depth of polymerization, in filler type-dependent fashion. Thiourethane reduces the polymerization stress for all fillers. The findings suggest that this approach results in the same general effects with the addition of thiourethanes directly to the matrix. This is accomplished with a lower overall concentration of thiourethane, and with no prejudice to the handling characteristics of the material.

20.
Acta Biomater ; 100: 132-141, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31574321

RESUMO

OBJECTIVES: Quaternary ammonium (QA) methacrylate monomers have been extensively investigated and demonstrate excellent antibacterial properties. However, the presence of ester bonds makes them prone to degradation in the oral cavity. In this study, ester-free QA monomers based on meth-acrylamides were synthesized and screened for polymerization kinetics, mechanical properties and antibacterial effects. MATERIALS AND METHODS: Tertiary quaternary ammonium acrylamides (AM) and methacrylamides (MAM) with alkyl side chain lengths of 9 and 14 carbons (C9 and C14) were synthesized and incorporated at 10 wt% into experimental composites based on BisGMA:TEGDMA (1:1), camphorquinone/ethyl-4-dimethylaminobenzoate (0.2/0.8 wt%) and 70 wt% barium glass fillers. Analogous methacrylate versions (MA) were used as controls. Degree of conversion (DC) and rate of polymerization (RP) during photoactivation (800 mW/cm2) were followed in real-time with near-IR. Flexural Strength (FS) and Modulus (E) were measured on 2 × 2 × 25 mm bars in 3-point bending after 24 h dry storage and 7-day storage in water at 37 °C. Antimicrobial properties and biofilm adhesion (fouling) were evaluated by bioluminescence (Luciferase Assay) and biofilm removal by water spray microjet impingement test, respectively. Cytotoxicity was assessed by MTT assay on dental pulp stem cells (DPSC). Data were analyzed with one-way ANOVA/Tukey's test (α = 0.05). RESULTS: DC was similar for all groups tested (∼70%). Both MAMs and C14-AM presented significantly lower RP. Under dry conditions, FS (110-120 MPa) and E (8-9 GPa) were similar for all groups. After water storage, all materials presented FS/E similar to the control, except for C14-AM (for FS) and C14-MAM (for E), which were lower. All C14 versions were strongly antibacterial, decreasing the titer counts of biofilm by more than two orders of magnitude in comparison to the control. C9 monomers did not present significant antibacterial nor antifouling properties. And biofilms had approximately equivalent adhesion on the C9 composites as on the control. Cytotoxicity did not show significant differences between the MA and AM versions and the control group. CONCLUSIONS: C14-QA monomers based on methacrylates and meth-acrylamides present strong antibacterial properties, and in general, similar conversion/mechanical properties compared to the methacrylate control. STATEMENT OF SIGNIFICANCE: This work demonstrates the viability of methacrylamides and acrylamides as potential components in dental restorative materials with antimicrobial properties. The use of ester-free polymerizable functionalities has the potential of improving the degradation resistance of these materials long-term. The use of (meth)acrylamides did not interfere with the antimicrobial potential of quaternary ammonium-based materials.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ésteres/química , Teste de Materiais , Fenômenos Mecânicos , Polimerização , Acrilamida/química , Resinas Compostas/química , Humanos , Cinética , Luminescência , Metacrilatos/química , Espectroscopia de Prótons por Ressonância Magnética , Compostos de Amônio Quaternário/química , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...