Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885318

RESUMO

Increasing evidence supports the interplay between oncogenic mutations and immune escape mechanisms. Strategies to counteract the immune escape mediated by oncogenic signaling could provide improved therapeutic options for patients with various malignancies. As mutant calreticulin (CALR) is a common driver of myeloproliferative neoplasms (MPN), we analyzed the impact of oncogenic CALRdel52 on the bone marrow (BM) microenvironment in MPN. Single-cell RNA-sequencing revealed that CALRdel52 led to the expansion of TGF-ß1-producing erythroid progenitor cells and promoted the expansion of FoxP3+ regulatory T cells (Treg) in a murine MPN model. Treatment with an anti-TGF-ß antibody improved mouse survival and increased the glycolytic activity in CD4+ and CD8+ T cells in vivo, while T cell depletion abrogated the protective effects conferred by neutralizing TGF-ß. TGF-ß1 reduced perforin and TNF-α production by T cells in vitro. TGF-ß1 production by CALRdel52 cells was dependent on JAK1/2, PI3K, and ERK activity, which activated the transcription factor Sp1 to induce TGF-ß1 expression. In four independent patient cohorts, TGF-ß1 expression was increased in the BM of MPN patients compared to healthy individuals, and the BM of MPN patients contained a higher frequency of Treg compared to healthy individuals. Together, this study identified an ERK/Sp1/TGF-ß1 axis in CALRdel52 MPNs as a mechanism of immunosuppression that can be targeted to elicit T-cell-mediated cytotoxicity.

2.
Sci Transl Med ; 16(751): eadj9672, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865481

RESUMO

Cancer treatment with anti-PD-1 immunotherapy can cause central nervous system immune-related adverse events (CNS-irAEs). The role of microglia in anti-PD-1 immunotherapy-induced CNS-irAEs is unclear. We found that anti-PD-1 treatment of mice caused morphological signs of activation and major histocompatibility complex (MHC) class II up-regulation on microglia. Functionally, anti-PD-1 treatment induced neurocognitive deficits in mice, independent of T cells, B cells, and natural killer cells. Instead, we found that microglia mediated these CNS-irAEs. Single-cell RNA sequencing revealed major transcriptional changes in microglia upon anti-PD-1 treatment. The anti-PD-1 effects were mediated by anti-PD-1 antibodies interacting directly with microglia and were not secondary to peripheral T cell activation. Using a proteomics approach, we identified spleen tyrosine kinase (Syk) as a potential target in activated microglia upon anti-PD-1 treatment. Syk inhibition reduced microglia activation and improved neurocognitive function without impairing anti-melanoma effects. Moreover, we analyzed CNS tissue from a patient cohort that had received anti-PD-1 treatment. Imaging mass cytometry revealed that anti-PD-1 treatment of patients was associated with increased surface marker expression indicative of microglia activation. In summary, we identified a disease-promoting role for microglia in CNS-irAEs driven by Syk and provide an inhibitor-based approach to interfere with this complication after anti-PD-1 immunotherapy.


Assuntos
Sistema Nervoso Central , Imunoterapia , Microglia , Receptor de Morte Celular Programada 1 , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Imunoterapia/efeitos adversos , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Humanos , Sistema Nervoso Central/patologia , Sistema Nervoso Central/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Quinase Syk/metabolismo , Camundongos
3.
Nat Cancer ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741011

RESUMO

Cancer immunotherapy with chimeric antigen receptor (CAR) T cells can cause immune effector cell-associated neurotoxicity syndrome (ICANS). However, the molecular mechanisms leading to ICANS are not well understood. Here we examined the role of microglia using mouse models and cohorts of individuals with ICANS. CD19-directed CAR (CAR19) T cell transfer in B cell lymphoma-bearing mice caused microglia activation and neurocognitive deficits. The TGFß-activated kinase-1 (TAK1)-NF-κB-p38 MAPK pathway was activated in microglia after CAR19 T cell transfer. Pharmacological TAK1 inhibition or genetic Tak1 deletion in microglia using Cx3cr1CreER:Tak1fl/fl mice resulted in reduced microglia activation and improved neurocognitive activity. TAK1 inhibition allowed for potent CAR19-induced antilymphoma effects. Individuals with ICANS exhibited microglia activation in vivo when studied by translocator protein positron emission tomography, and imaging mass cytometry revealed a shift from resting to activated microglia. In summary, we prove a role for microglia in ICANS pathophysiology, identify the TAK1-NF-κB-p38 MAPK axis as a pathogenic signaling pathway and provide a rationale to test TAK1 inhibition in a clinical trial for ICANS prevention after CAR19 T cell-based cancer immunotherapy.

4.
Sci Transl Med ; 16(735): eadi1501, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381845

RESUMO

Acute graft-versus-host disease (aGVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT), for which therapeutic options are limited. Strategies to promote intestinal tissue tolerance during aGVHD may improve patient outcomes. Using single-cell RNA sequencing, we identified a lipocalin-2 (LCN2)-expressing neutrophil population in mice with intestinal aGVHD. Transfer of LCN2-overexpressing neutrophils or treatment with recombinant LCN2 reduced aGVHD severity, whereas the lack of epithelial or hematopoietic LCN2 enhanced aGVHD severity and caused microbiome alterations. Mechanistically, LCN2 induced insulin-like growth factor 1 receptor (IGF-1R) signaling in macrophages through the LCN2 receptor SLC22A17, which increased interleukin-10 (IL-10) production and reduced major histocompatibility complex class II (MHCII) expression. Transfer of LCN2-pretreated macrophages reduced aGVHD severity but did not reduce graft-versus-leukemia effects. Furthermore, LCN2 expression correlated with IL-10 expression in intestinal biopsies in multiple cohorts of patients with aGVHD, and LCN2 induced IGF-1R signaling in human macrophages. Collectively, we identified a LCN2-expressing intestinal neutrophil population that reduced aGVHD severity by decreasing MHCII expression and increasing IL-10 production in macrophages. This work provides the foundation for administration of LCN2 as a therapeutic approach for aGVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Animais , Camundongos , Neutrófilos/patologia , Interleucina-10 , Lipocalina-2/genética , Doença Enxerto-Hospedeiro/genética , Macrófagos/patologia , Doença Aguda
5.
Nat Commun ; 15(1): 446, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38199985

RESUMO

Patients with corticosteroid-refractory acute graft-versus-host disease (aGVHD) have a low one-year survival rate. Identification and validation of novel targetable kinases in patients who experience corticosteroid-refractory-aGVHD may help improve outcomes. Kinase-specific proteomics of leukocytes from patients with corticosteroid-refractory-GVHD identified rho kinase type 1 (ROCK1) as the most significantly upregulated kinase. ROCK1/2 inhibition improved survival and histological GVHD severity in mice and was synergistic with JAK1/2 inhibition, without compromising graft-versus-leukemia-effects. ROCK1/2-inhibition in macrophages or dendritic cells prior to transfer reduced GVHD severity. Mechanistically, ROCK1/2 inhibition or ROCK1 knockdown interfered with CD80, CD86, MHC-II expression and IL-6, IL-1ß, iNOS and TNF production in myeloid cells. This was accompanied by impaired T cell activation by dendritic cells and inhibition of cytoskeletal rearrangements, thereby reducing macrophage and DC migration. NF-κB signaling was reduced in myeloid cells following ROCK1/2 inhibition. In conclusion, ROCK1/2 inhibition interferes with immune activation at multiple levels and reduces acute GVHD while maintaining GVL-effects, including in corticosteroid-refractory settings.


Assuntos
Doença Enxerto-Hospedeiro , Quinases Associadas a rho , Humanos , Animais , Camundongos , Quinases Associadas a rho/genética , Doença Enxerto-Hospedeiro/tratamento farmacológico , Transdução de Sinais , NF-kappa B , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico
6.
Arterioscler Thromb Vasc Biol ; 44(3): 690-697, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38269586

RESUMO

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP) is an acquired genetic risk factor for both leukemia and cardiovascular disease. It results in proinflammatory myeloid cells in the bone marrow and blood; however, how these cells behave in the cardiovascular tissue remains unclear. Our study aimed at investigating whether CHIP-mutated macrophages accumulate preferentially in cardiovascular tissues and examining the transcriptome of tissue macrophages from DNMT3A (DNA methyltransferase 3 alpha) or TET2 (Tet methylcytosine dioxygenase 2) mutation carriers. METHODS: We recruited patients undergoing carotid endarterectomy or heart surgeries to screen for CHIP mutation carriers using targeted genomic sequencing. Myeloid and lymphoid cells were isolated from blood and cardiovascular tissue collected during surgeries using flow cytometry. DNA and RNA extracted from these sorted cells were subjected to variant allele frequency measurement using droplet digital polymerase chain reaction and transcriptomic profiling using bulk RNA sequencing, respectively. RESULTS: Using droplet digital polymerase chain reaction, we detected similar variant allele frequency of CHIP in monocytes from blood and macrophages from atheromas and heart tissues, even among heart macrophages with and without CCR2 (C-C motif chemokine receptor 2) expression. Bulk RNA sequencing revealed a proinflammatory gene profile of myeloid cells from DNMT3A or TET2 mutation carriers compared with those from noncarriers. CONCLUSIONS: Quantitatively, CHIP-mutated myeloid cells did not preferentially accumulate in cardiovascular tissues, but qualitatively, they expressed a more disease-prone phenotype.


Assuntos
Doenças Cardiovasculares , Hematopoiese Clonal , Humanos , Hematopoiese Clonal/genética , Hematopoese/genética , Macrófagos/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA