Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(5): e0004724, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38651898

RESUMO

RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. Although viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when the entry was bypassed, suggesting that the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in murine BV2 cells and infected mice, with reduced viral titers. These results suggest a fitness tradeoff, where increased fitness in a non-native host cell reduces fitness in a natural host environment. Overall, this work suggests that MNV tropism is determined by the presence of not only the viral receptor but also post-entry factors. IMPORTANCE: Viruses infect specific species and cell types, which is dictated by the expression of host factors required for viral entry as well as downstream replication steps. Murine norovirus (MNV) infects mouse cells, but not human cells. However, human cells expressing the murine CD300lf receptor support MNV replication, suggesting that receptor expression is a major determinant of MNV tropism. To determine whether other factors influence MNV tropism, we selected for variants with enhanced replication in human cells. We identified mutations that enhance MNV replication in human cells and demonstrated that these mutations enhance infection at a post-entry replication step. Therefore, MNV infection of human cells is restricted at both entry and post-entry stages. These results shed new light on factors that influence viral tropism and host range.


Assuntos
Especificidade de Hospedeiro , Mutação , Norovirus , Tropismo Viral , Internalização do Vírus , Replicação Viral , Norovirus/genética , Norovirus/fisiologia , Humanos , Animais , Camundongos , Células HeLa , Infecções por Caliciviridae/virologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Genoma Viral , Receptores Virais/metabolismo , Receptores Virais/genética , Ligação Viral
2.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260699

RESUMO

RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select for mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. While viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when entry was bypassed, suggesting the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in mouse BV2 cells. Although the mutant viruses had increased fitness in HeLa cells, they did not have increased fitness in mice. Overall, this work suggests that MNV tropism is not only determined by the presence of the viral receptor but also post-entry factors.

3.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917202

RESUMO

Virophagy, the selective autophagosomal engulfment and lysosomal degradation of viral components, is crucial for neuronal cell survival and antiviral immunity. However, the mechanisms leading to viral antigen recognition and capture by autophagic machinery remain poorly understood. Here, we identified cyclin-dependent kinase-like 5 (CDKL5), known to function in neurodevelopment, as an essential regulator of virophagy. Loss-of-function mutations in CDKL5 are associated with a severe neurodevelopmental encephalopathy. We found that deletion of CDKL5 or expression of a clinically relevant pathogenic mutant of CDKL5 reduced virophagy of Sindbis virus (SINV), a neurotropic RNA virus, and increased intracellular accumulation of SINV capsid protein aggregates and cellular cytotoxicity. Cdkl5-knockout mice displayed increased viral antigen accumulation and neuronal cell death after SINV infection and enhanced lethality after infection with several neurotropic viruses. Mechanistic studies demonstrated that CDKL5 directly binds the canonical selective autophagy receptor p62 and phosphorylates p62 at T269/S272 to promote its interaction with viral capsid aggregates. We found that CDKL5-mediated phosphorylation of p62 facilitated the formation of large p62 inclusion bodies that captured viral capsids to initiate capsid targeting to autophagic machinery. Overall, these findings identify a cell-autonomous innate immune mechanism for autophagy activation to clear intracellular toxic viral protein aggregates during infection.


Assuntos
Agregados Proteicos , Vírus , Camundongos , Animais , Autofagia/genética , Fosforilação , Camundongos Knockout , Proteínas do Capsídeo , Antígenos Virais , Proteínas Serina-Treonina Quinases/genética
5.
Annu Rev Virol ; 10(1): i, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37774131
6.
mSphere ; 7(3): e0004622, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35531660

RESUMO

Enteric viruses encounter various bacteria in the host, which can impact infection outcomes. The interactions between noroviruses and enteric bacteria are not well understood. Previous work determined that murine norovirus (MNV), a model norovirus, had decreased replication in antibiotic-treated mice compared with conventional mice. Although this suggests that the microbiota promotes MNV infection, the mechanisms are not completely understood. Additionally, prior work with other enteric viruses, such as poliovirus and coxsackievirus B3, demonstrated that virions bind bacteria, and exposure to bacteria stabilizes viral particles and limits premature RNA release. Therefore, we examined interactions between MNV and specific bacteria and the consequences of these interactions. We found that the majority of Gram-positive bacteria tested stabilized MNV, while Gram-negative bacteria did not stabilize MNV. Both Gram-positive and Gram-negative bacteria bound to MNV. However, bacterial binding alone was not sufficient for virion stabilization, since Gram-negative bacteria bound MNV but did not stabilize virions. Additionally, we found that bacteria conditioned medium also stabilized MNV and this stabilization may be due to a small heat-stable molecule. Overall, this work identifies specific bacteria and bacterial components that stabilize MNV and may impact virion stability in the environment. IMPORTANCE Enteric viruses are exposed to a wide variety of bacteria in the intestine, but the effects of bacteria on viral particles are incompletely understood. We found that murine norovirus (MNV) virion stability is enhanced in the presence of several Gram-positive bacterial strains. Virion-stabilizing activity was also present in bacterial culture medium, and activity was retained upon heat or protease treatment. These results suggest that certain bacteria and bacterial products may promote MNV stability in the environment, which could influence viral transmission.


Assuntos
Infecções por Enterovirus , Enterovirus , Norovirus , Animais , Antibacterianos , Bactérias , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Camundongos
7.
Elife ; 102021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34730512

RESUMO

Animals have evolved unique repertoires of innate immune genes and pathways that provide their first line of defense against pathogens. To reconstruct the ancestry of animal innate immunity, we have developed the choanoflagellate Monosiga brevicollis, one of the closest living relatives of animals, as a model for studying mechanisms underlying pathogen recognition and immune response. We found that M. brevicollis is killed by exposure to Pseudomonas aeruginosa bacteria. Moreover, M. brevicollis expresses STING, which, in animals, activates innate immune pathways in response to cyclic dinucleotides during pathogen sensing. M. brevicollis STING increases the susceptibility of M. brevicollis to P. aeruginosa-induced cell death and is required for responding to the cyclic dinucleotide 2'3' cGAMP. Furthermore, similar to animals, autophagic signaling in M. brevicollis is induced by 2'3' cGAMP in a STING-dependent manner. This study provides evidence for a pre-animal role for STING in antibacterial immunity and establishes M. brevicollis as a model system for the study of immune responses.


Assuntos
Coanoflagelados/imunologia , Imunidade Inata , Proteínas de Membrana/metabolismo , Coanoflagelados/genética , Coanoflagelados/metabolismo , Coanoflagelados/microbiologia , GMP Cíclico/metabolismo , Proteínas de Membrana/genética , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34282021

RESUMO

RNA viruses exist as genetically heterogeneous populations due to high mutation rates, and many of these mutations reduce fitness and/or replication speed. However, it is unknown whether mutations can increase replication speed of a virus already well adapted to replication in cultured cells. By sequentially passaging coxsackievirus B3 in cultured cells and collecting the very earliest progeny, we selected for increased replication speed. We found that a single mutation in a viral capsid protein, VP1-F106L, was sufficient for the fast-replication phenotype. Characterization of this mutant revealed quicker genome release during entry compared to wild-type virus, highlighting a previously unappreciated infection barrier. However, this mutation also reduced capsid stability in vitro and reduced replication and pathogenesis in mice. These results reveal a tradeoff between overall replication speed and fitness. Importantly, this approach-selecting for the earliest viral progeny-could be applied to a variety of viral systems and has the potential to reveal unanticipated inefficiencies in viral replication cycles.


Assuntos
Enterovirus Humano B/genética , Infecções por Enterovirus/virologia , Replicação Viral/genética , Animais , Clonagem Molecular , Enterovirus Humano B/fisiologia , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Mutação , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Replicação Viral/fisiologia
9.
Curr Opin Virol ; 46: 15-19, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32898729

RESUMO

Enteric viruses are important human pathogens that pose a significant global health problem. These viruses infect the gastrointestinal tract, which contains a community of microbes called the 'microbiota'. We and others have shown that intestinal microbiota are crucial for the replication, pathogenesis, and transmission of a variety of enteric viruses. However, the mechanisms underlying microbiota enhancement of enteric virus infection remain unclear. Interestingly, the host immune system is dependent on both the abundance and composition of the intestinal microbiota. Here we review several aspects of how microbiota influence the immune system and how this could potentially impact enteric virus infection.


Assuntos
Gastroenteropatias/virologia , Microbioma Gastrointestinal , Trato Gastrointestinal/virologia , Sistema Imunitário/fisiologia , Viroses/virologia , Animais , Bactérias/metabolismo , Ritmo Circadiano , Ácidos Graxos Voláteis/metabolismo , Gastroenteropatias/imunologia , Humanos , Imunomodulação , Interações Microbianas , Viroses/imunologia , Replicação Viral
10.
Nature ; 589(7842): 456-461, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328639

RESUMO

Autophagy, a process of degradation that occurs via the lysosomal pathway, has an essential role in multiple aspects of immunity, including immune system development, regulation of innate and adaptive immune and inflammatory responses, selective degradation of intracellular microorganisms, and host protection against infectious diseases1,2. Autophagy is known to be induced by stimuli such as nutrient deprivation and suppression of mTOR, but little is known about how autophagosomal biogenesis is initiated in mammalian cells in response to viral infection. Here, using genome-wide short interfering RNA screens, we find that the endosomal protein sorting nexin 5 (SNX5)3,4 is essential for virus-induced, but not for basal, stress- or endosome-induced, autophagy. We show that SNX5 deletion increases cellular susceptibility to viral infection in vitro, and that Snx5 knockout in mice enhances lethality after infection with several human viruses. Mechanistically, SNX5 interacts with beclin 1 and ATG14-containing class III phosphatidylinositol-3-kinase (PI3KC3) complex 1 (PI3KC3-C1), increases the lipid kinase activity of purified PI3KC3-C1, and is required for endosomal generation of phosphatidylinositol-3-phosphate (PtdIns(3)P) and recruitment of the PtdIns(3)P-binding protein WIPI2 to virion-containing endosomes. These findings identify a context- and organelle-specific mechanism-SNX5-dependent PI3KC3-C1 activation at endosomes-for initiation of autophagy during viral infection.


Assuntos
Autofagia/imunologia , Nexinas de Classificação/metabolismo , Vírus/imunologia , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Linhagem Celular , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Endossomos/metabolismo , Feminino , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Nexinas de Classificação/deficiência , Nexinas de Classificação/genética , Proteínas de Transporte Vesicular/metabolismo
11.
Virology ; 546: 20-24, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452414

RESUMO

Coxsackieviruses primarily infect the gastrointestinal tract of humans, but they can disseminate systemically and cause severe disease. Using antibiotic treatment regimens to deplete intestinal microbes in mice, several groups have shown that bacteria promote oral infection with a variety of enteric viruses. However, it is unknown whether antibiotics have microbiota-independent antiviral effects for enteric viruses or whether antibiotics influence extra-intestinal, systemic infection. Here, we examined the effects of antibiotics on systemic enteric virus infection by performing intraperitoneal injections of either coxsackievirus B3 (CVB3) or poliovirus followed by quantification of viral titers. We found that antibiotic treatment reduced systemic infection for both viruses. Interestingly, antibiotics reduced CVB3 titers in germ-free mice, suggesting that antibiotic treatment alters CVB3 infection through a microbiota-independent mechanism. Overall, these data provide further evidence that antibiotics can have noncanonical effects on viral infection.


Assuntos
Antibacterianos/farmacologia , Infecções por Coxsackievirus/microbiologia , Enterovirus/efeitos dos fármacos , Microbiota , Poliomielite/microbiologia , Poliovirus/efeitos dos fármacos , Animais , Infecções por Coxsackievirus/virologia , Enterovirus/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Poliomielite/virologia , Poliovirus/fisiologia
12.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31666382

RESUMO

The gastrointestinal tract presents a formidable barrier for pathogens to initiate infection. Despite this barrier, enteroviruses, including coxsackievirus B3 (CVB3), successfully penetrate the intestine to initiate infection and spread systemically prior to shedding in stool. However, the effect of the gastrointestinal barrier on CVB3 population dynamics is relatively unexplored, and the selective pressures acting on CVB3 in the intestine are not well characterized. To examine viral population dynamics in orally infected mice, we produced over 100 CVB3 clones harboring nine unique nucleotide "barcodes." Using this collection of barcoded viruses, we found diverse viral populations throughout each mouse within the first day postinfection, but by 48 h the viral populations were dominated by fewer than three barcoded viruses in intestinal and extraintestinal tissues. Using light-sensitive viruses to track replication status, we found that diverse viruses had replicated prior to loss of diversity. Sequencing whole viral genomes from samples later in infection did not reveal detectable viral adaptations. Surprisingly, orally inoculated CVB3 was detectable in pancreas and liver as soon as 20 min postinoculation, indicating rapid systemic dissemination. These results suggest rapid dissemination of diverse viral populations, followed by a major restriction in population diversity and monopolization in all examined tissues. These results underscore a complex dynamic between dissemination and clearance for an enteric virus.IMPORTANCE Enteric viruses initiate infection in the gastrointestinal tract but can disseminate to systemic sites. However, the dynamics of viral dissemination are unclear. In this study, we created a library of 135 barcoded coxsackieviruses to examine viral population diversity across time and space following oral inoculation of mice. Overall, we found that the broad population of viruses disseminates early, followed by monopolization of mouse tissues with three or fewer pool members at later time points. Interestingly, we detected virus in systemic tissues such as pancreas and liver just 20 min after oral inoculation. These results suggest rapid dissemination of diverse viral populations, followed by a major restriction in population diversity and monopolization in all examined tissues.


Assuntos
Código de Barras de DNA Taxonômico , Enterovirus Humano B/fisiologia , Infecções por Enterovirus , Replicação Viral , Animais , Infecções por Enterovirus/genética , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/patologia , Células HeLa , Humanos , Camundongos , Camundongos Knockout
13.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852778

RESUMO

Enteric viruses infect the gastrointestinal tract, and bacteria can promote replication and transmission of several enteric viruses. Viruses can be inactivated by exposure to heat or bleach, but poliovirus, coxsackievirus B3, and reovirus can be stabilized by bacteria or bacterial polysaccharides, limiting inactivation and aiding transmission. We previously demonstrated that certain N-acetylglucosamine (GlcNAc)-containing polysaccharides can stabilize poliovirus. However, the detailed virus-glycan binding specificity and glycan chain length requirements, and thus the mechanism of virion stabilization, have been unclear. A previous limitation was our lack of defined-length glycans to probe mechanisms and consequences of virus-glycan interactions. Here, we generated a panel of polysaccharides and oligosaccharides to determine the properties required for binding and stabilization of poliovirus. Poliovirus virions are nonenveloped icosahedral 30-nm particles with 60 copies of each of four capsid proteins, VP1 to VP4. VP1 surrounds the 5-fold axis, and our past work indicates that this region likely contains the glycan binding site. We found that relatively short GlcNAc oligosaccharides, such as a six-unit GlcNAc oligomer, can bind poliovirus but fail to enhance virion stability. Virion stabilization required binding of long GlcNAc polymers of greater than 20 units. Our data suggest a model where GlcNAc polymers of greater than 20 units bind and bridge adjacent 5-fold axes, thus aiding capsid rigidity and stability. This study provides a deeper understanding of enteric virus-bacterial glycan interactions, which are important for virion environmental stability and transmission.IMPORTANCE Enteric viruses are transmitted through the fecal-oral route, but how enteric viruses survive in the environment is unclear. Previously, we found that bacterial polysaccharides enhance poliovirus stability against heat or bleach inactivation, but the specific molecular requirements have been unknown. Here, we showed that certain short-chain oligosaccharides can bind to poliovirus but do not increase virion stability. Long-chain polysaccharides bind and may bridge adjacent sites on the viral surface, thus increasing capsid rigidity and stability. This work defines the unique interactions of poliovirus and glycans, which provides insight into virion environmental stability and transmission.


Assuntos
Enterovirus/metabolismo , Oligossacarídeos/metabolismo , Poliovirus/fisiologia , Polissacarídeos , Vírion/fisiologia , Animais , Bactérias/metabolismo , Proteínas do Capsídeo/metabolismo , Chlorocebus aethiops , Infecções por Enterovirus/virologia , Células HeLa , Humanos , Lipopolissacarídeos/metabolismo , Células Vero
14.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511379

RESUMO

Accumulating evidence suggests that intestinal bacteria promote enteric virus infection in mice. For example, previous work demonstrated that antibiotic treatment of mice prior to oral infection with poliovirus reduced viral replication and pathogenesis. Here, we examined the effect of antibiotic treatment on infection with coxsackievirus B3 (CVB3), a picornavirus closely related to poliovirus. We treated mice with a mixture of five antibiotics to deplete host microbiota and examined CVB3 replication and pathogenesis following oral inoculation. We found that, as seen with poliovirus, CVB3 shedding and pathogenesis were reduced in antibiotic-treated mice. While treatment with just two antibiotics, vancomycin and ampicillin, was sufficient to reduce CVB3 replication and pathogenesis, this treatment had no effect on poliovirus. The quantity and composition of bacterial communities were altered by treatment with the five-antibiotic cocktail and by treatment with vancomycin and ampicillin. To determine whether more-subtle changes in bacterial populations impact viral replication, we examined viral infection in mice treated with milder antibiotic regimens. Mice treated with one-tenth the standard concentration of the normal antibiotic cocktail supported replication of poliovirus but not CVB3. Importantly, a single dose of one antibiotic, streptomycin, was sufficient to reduce CVB3 shedding and pathogenesis while having no effect on poliovirus shedding and pathogenesis. Overall, replication and pathogenesis of CVB3 are more sensitive to antibiotic treatment than poliovirus, indicating that closely related viruses may differ with respect to their reliance on microbiota.IMPORTANCE Recent data indicate that intestinal bacteria promote intestinal infection of several enteric viruses. Here, we show that coxsackievirus, an enteric virus in the picornavirus family, also relies on microbiota for intestinal replication and pathogenesis. Relatively minor depletion of the microbiota was sufficient to decrease coxsackievirus infection, while poliovirus infection was unaffected. Surprisingly, a single dose of one antibiotic was sufficient to reduce coxsackievirus infection. Therefore, these data indicate that closely related viruses may differ with respect to their reliance on microbiota.


Assuntos
Infecções por Enterovirus/microbiologia , Infecções por Enterovirus/virologia , Enterovirus/efeitos dos fármacos , Enterovirus/patogenicidade , Microbiota/efeitos dos fármacos , Ampicilina/farmacologia , Animais , Antibacterianos/farmacologia , Bactérias/classificação , Infecções por Coxsackievirus , Modelos Animais de Doenças , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Picornaviridae/efeitos dos fármacos , Picornaviridae/patogenicidade , Poliovirus/efeitos dos fármacos , Poliovirus/patogenicidade , Vancomicina/farmacologia , Replicação Viral/efeitos dos fármacos
15.
mSphere ; 4(2)2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944213

RESUMO

Several viruses encounter various bacterial species within the host and in the environment. Despite these close encounters, the effects of bacteria on picornaviruses are not completely understood. Previous work determined that poliovirus (PV), an enteric virus, has enhanced virion stability when exposed to bacteria or bacterial surface polysaccharides such as lipopolysaccharide. Virion stabilization by bacteria may be important for interhost transmission, since a mutant PV with reduced bacterial binding had a fecal-oral transmission defect in mice. Therefore, we investigated whether bacteria broadly enhance stability of picornaviruses from three different genera: Enterovirus (PV and coxsackievirus B3 [CVB3]), Kobuvirus (Aichi virus), and Cardiovirus (mengovirus). Furthermore, to delineate strain-specific effects, we examined two strains of CVB3 and a PV mutant with enhanced thermal stability. We determined that specific bacterial strains enhance thermal stability of PV and CVB3, while mengovirus and Aichi virus are stable at high temperatures in the absence of bacteria. Additionally, we determined that bacteria or lipopolysaccharide can stabilize PV, CVB3, Aichi virus, and mengovirus during exposure to bleach. These effects are likely mediated through direct interactions with bacteria, since viruses bound to bacteria in a pulldown assay. Overall, this work reveals shared and distinct effects of bacteria on a panel of picornaviruses.IMPORTANCE Recent studies have shown that bacteria promote infection and stabilization of poliovirus particles, but the breadth of these effects on other members of the Picornaviridae family is unknown. Here, we compared the effects of bacteria on four distinct members of the Picornaviridae family. We found that bacteria reduced inactivation of all of the viruses during bleach treatment, but not all viral strains were stabilized by bacteria during heat treatment. Overall, our data provide insight into how bacteria play differential roles in picornavirus stability.


Assuntos
Bactérias/virologia , Temperatura Alta , Interações Microbianas , Picornaviridae/fisiologia , Cardiovirus/genética , Cardiovirus/fisiologia , Enterovirus/genética , Enterovirus/fisiologia , Kobuvirus/genética , Kobuvirus/fisiologia , Mutação , Picornaviridae/genética , Poliovirus/genética , Poliovirus/fisiologia , Hipoclorito de Sódio , Inativação de Vírus/efeitos dos fármacos
16.
Virus Res ; 265: 43-46, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30836113

RESUMO

RNA virus populations are diverse due to a variety of factors, including lack of proofreading of the viral RNA-dependent RNA polymerase. These diverse viral populations include defective viruses incapable of productive infection. Recent studies have determined the existence of several modes of viral transmission outside of canonical pathways, including en bloc transmission of multiple viruses into a single host cell via membrane vesicles. Additionally, it has recently been determined that viral aggregation and bacteria can facilitate the delivery of multiple viruses to a single cell. Co-infection of RNA viruses is important since it has the potential to enhance viral fitness. Furthermore, through complementation and recombination, co-infection could potentially promote "resurrection" of otherwise defective viral genomes and has the potential to expand viral diversity.


Assuntos
Coinfecção/virologia , Evolução Molecular , Recombinação Genética , Animais , Coinfecção/microbiologia , Vírus Defeituosos/genética , Genoma Viral , Humanos , Camundongos , Vírus de RNA/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA , Viroses , Replicação Viral/genética
17.
mSphere ; 4(1)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787120

RESUMO

Coxsackievirus typically infects humans via the gastrointestinal tract, which has a large number of microorganisms collectively referred to as the microbiota. To study how the intestinal microbiota influences enteric virus infection, several groups have used an antibiotic regimen in mice to deplete bacteria. These studies have shown that bacteria promote infection with several enteric viruses. However, very little is known about whether antibiotics influence viruses in a microbiota-independent manner. In this study, we sought to determine the effects of antibiotics on coxsackievirus B3 (CVB3) using an in vitro cell culture model in the absence of bacteria. We determined that an aminoglycoside antibiotic, neomycin, enhanced the plaque size of CVB3 strain Nancy. Neomycin treatment did not alter viral attachment, translation, or replication. However, we found that the positive charge of neomycin and other positively charged compounds enhanced viral diffusion by overcoming the negative inhibitory effect of sulfated polysaccharides present in agar overlays. Neomycin and the positively charged compound protamine also enhanced plaque formation of reovirus. Overall, these data provide further evidence that antibiotics can play noncanonical roles in viral infections and that this should be considered when studying enteric virus-microbiota interactions.IMPORTANCE Coxsackieviruses primarily infect the gastrointestinal tract of humans, but they can disseminate systemically and cause severe disease. Using antibiotic treatment regimens to deplete intestinal microbes in mice, several groups have shown the bacteria promote infection with a variety of enteric viruses. However, it is possible that antibiotics have microbiota-independent effects on viruses. Here we show that an aminoglycoside antibiotic, neomycin, can influence quantification of coxsackievirus in cultured cells in the absence of bacteria.


Assuntos
Antibacterianos/farmacologia , Enterovirus/efeitos dos fármacos , Neomicina/farmacologia , Linhagem Celular , Células Cultivadas , Microbioma Gastrointestinal , Células HeLa , Humanos , Orthoreovirus de Mamíferos/efeitos dos fármacos , Ensaio de Placa Viral , Replicação Viral/efeitos dos fármacos
18.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30567995

RESUMO

Enteric viruses, including poliovirus, are spread by the fecal-oral route. In order to persist and transmit to a new host, enteric virus particles must remain stable once they are in the environment. Environmental stressors such as heat and disinfectants can inactivate virus particles and prevent viral transmission. It has been previously demonstrated that bacteria or bacterial surface glycans can enhance poliovirus virion stability and limit inactivation from heat or bleach. While investigating the mechanisms underlying bacterially enhanced virion thermal stability, we identified and characterized a poliovirus (PV) mutant with increased resistance to heat inactivation. The M132V mutant harbors a single amino acid change in the VP1 capsid coding that is sufficient to confer heat resistance but not bleach resistance. Although the M132V virus was stable in the absence of bacteria or feces at most temperatures, M132V virus was stabilized by feces at very high temperatures. M132V PV had reduced specific infectivity and RNA uncoating compared with those of wild-type (WT) PV, but viral yields in HeLa cells were similar. In orally inoculated mice, M132V had a slight fitness cost since fecal titers were lower and 12.5% of fecal viruses reverted to the WT. Overall, this work sheds light on factors that influence virion stability and fitness.IMPORTANCE Viruses spread by the fecal-oral route need to maintain viability in the environment to ensure transmission. Previous work indicated that bacteria and bacterial surface polysaccharides can stabilize viral particles and enhance transmission. To explore factors that influence viral particle stability, we isolated a mutant poliovirus that is heat resistant. This mutant virus does not require feces for stability at most temperatures but can be stabilized by feces at very high temperatures. Even though the mutant virus is heat resistant, it is susceptible to inactivation by treatment with bleach. This work provides insight into how viral particles maintain infectivity in the environment.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/fisiologia , Mutação/genética , Poliovirus/genética , Aminoácidos/genética , Animais , Linhagem Celular Tumoral , Feminino , Células HeLa , Temperatura Alta , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Poliomielite/virologia , RNA Viral/genética , Vírion/genética
19.
Cell Host Microbe ; 23(1): 77-88.e5, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29290575

RESUMO

RNA viruses exist in genetically diverse populations due to high levels of mutations, many of which reduce viral fitness. Interestingly, intestinal bacteria can promote infection of several mammalian enteric RNA viruses, but the mechanisms and consequences are unclear. We screened a panel of 41 bacterial strains as a platform to determine how different bacteria impact infection of poliovirus, a model enteric virus. Most bacterial strains, including those extracted from cecal contents of mice, bound poliovirus, with each bacterium binding multiple virions. Certain bacterial strains increased viral co-infection of mammalian cells even at a low virus-to-host cell ratio. Bacteria-mediated viral co-infection correlated with bacterial adherence to cells. Importantly, bacterial strains that induced viral co-infection facilitated genetic recombination between two different viruses, thereby removing deleterious mutations and restoring viral fitness. Thus, bacteria-virus interactions may increase viral fitness through viral recombination at initial sites of infection, potentially limiting abortive infections.


Assuntos
Bactérias/genética , Infecções por Enterovirus/patologia , Poliovirus/genética , Recombinação Genética/genética , Animais , Bactérias/metabolismo , Bactérias/virologia , Linhagem Celular Tumoral , Coinfecção , Infecções por Enterovirus/virologia , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poliovirus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...