Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 317: 259-266, 2016 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27289269

RESUMO

Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

2.
Chemistry ; 20(51): 16869-72, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25367843

RESUMO

Complexation of amines with borane converts them to hypergols or decreases their ignition delays (IDs) multifold (with white fuming nitric acid as the oxidant). With consistently low IDs, amine-boranes represent a class of compounds that can be promising alternatives to toxic hydrazine and its derivatives as propellants. A structure-hypergolicity relationship study reveals the necessary features for the low ID.

3.
Chem Commun (Camb) ; 48(36): 4311-3, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22446931

RESUMO

Boron nanoparticles prepared by milling in the presence of a hypergolic energetic ionic liquid (EIL) are suspendable in the EIL and the EIL retains hypergolicity leading to the ignition of the boron. This approach allows for incorporation of a variety of nanoscale additives to improve EIL properties, such as energetic density and heat of combustion, while providing stability and safe handling of the nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...