Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hypertens ; 41(7): 1201-1214, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115907

RESUMO

OBJECTIVE: Small arteries from different organs vary with regard to the mechanisms that regulate vasoconstriction. This study investigated the impact of advanced age on the regulation of vasoconstriction in isolated human small arteries from kidney cortex and periintestinal mesenteric tissue. METHODS: Renal and mesenteric tissues were obtained from patients (mean age 71 ±â€Š9 years) undergoing elective surgery. Furthermore, intrarenal and mesenteric arteries from young and aged mice were studied. Arteries were investigated by small vessel myography and western blot. RESULTS: Human intrarenal arteries (h-RA) showed higher stretch-induced tone and higher reactivity to α 1 adrenergic receptor stimulation than human mesenteric arteries (h-MA). Rho-kinase (ROK) inhibition resulted in a greater decrease in Ca 2+ and depolarization-induced tone in h-RA than in h-MA. Basal and α 1 adrenergic receptor stimulation-induced phosphorylation of the regulatory light chain of myosin (MLC 20 ) was higher in h-RA than in h-MA. This was associated with higher ROK-dependent phosphorylation of the regulatory subunit of myosin light-chain-phosphatase (MLCP), MYPT1-T853. In h-RA phosphorylation of ribosomal S6-kinase II (RSK2-S227) was significantly higher than in h-MA. Stretch-induced tone and RSK2 phosphorylation was also higher in interlobar arteries (m-IAs) from aged mice than in respective vessels from young mice and in murine mesenteric arteries (m-MA) from both age groups. CONCLUSION: Vasoconstriction in human intrarenal arteries shows a greater ROK-dependence than in mesenteric arteries. Activation of RSK2 may contribute to intrarenal artery tone dysregulation associated with aging. Compared with h-RA, h-MA undergo age-related remodeling leading to a reduction of the contractile response to α 1 adrenergic stimulation.


Assuntos
Receptores Adrenérgicos alfa 1 , Quinases Associadas a rho , Humanos , Camundongos , Animais , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Quinases Associadas a rho/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Artérias Mesentéricas/metabolismo , Transdução de Sinais , Vasoconstrição , Miosinas/metabolismo , Fosforilação , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo
2.
Front Physiol ; 14: 1099278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37057180

RESUMO

Stretch-induced vascular tone is an important element of autoregulatory adaptation of cerebral vasculature to maintain cerebral flow constant despite changes in perfusion pressure. Little is known as to the regulation of tone in senescent basilar arteries. We tested the hypothesis, that thin filament mechanisms in addition to smooth muscle myosin-II regulatory-light-chain-(MLC20)-phosphorylation and non-muscle-myosin-II, contribute to regulation of stretch-induced tone. In young BAs (y-BAs) mechanical stretch does not lead to spontaneous tone generation. Stretch-induced tone in y-BAs appeared only after inhibition of NO-release by L-NAME and was fully prevented by treatment with 3 µmol/L RhoA-kinase (ROK) inhibitor Y27632. L-NAME-induced tone was reduced in y-BAs from heterozygous mice carrying a point mutation of the targeting-subunit of the myosin phosphatase, MYPT1 at threonine696 (MYPT1-T696A/+). In y-BAs, MYPT1-T696A-mutation also blunted the ability of L-NAME to increase MLC20-phosphorylation. In contrast, senescent BAs (s-BAs; >24 months) developed stable spontaneous stretch-induced tone and pharmacological inhibition of NO-release by L-NAME led to an additive effect. In s-BAs the MYPT1-T696A mutation also blunted MLC20-phosphorylation, but did not prevent development of stretch-induced tone. In s-BAs from both lines, Y27632 completely abolished stretch- and L-NAME-induced tone. In s-BAs phosphorylation of non-muscle-myosin-S1943 and PAK1-T423, shown to be down-stream effectors of ROK was also reduced by Y27632 treatment. Stretch- and L-NAME tone were inhibited by inhibition of non-muscle myosin (NM-myosin) by blebbistatin. We also tested whether the substrate of PAK1 the thin-filament associated protein, caldesmon is involved in the regulation of stretch-induced tone in advanced age. BAs obtained from heterozygotes Cald1+/- mice generated stretch-induced tone already at an age of 20-21 months old BAs (o-BA). The magnitude of stretch-induced tone in Cald1+/- o-BAs was similar to that in s-BA. In addition, truncation of caldesmon myosin binding Exon2 (CaD-▵Ex2-/-) did not accelerate stretch-induced tone. Our study indicates that in senescent cerebral vessels, mechanisms distinct from MLC20 phosphorylation contribute to regulation of tone in the absence of a contractile agonist. While in y-and o-BA the canonical pathways, i.e., inhibition of MLCP by ROK and increase in pMLC20, predominate, tone regulation in senescence involves ROK regulated mechanisms, involving non-muscle-myosin and thin filament linked mechanisms involving caldesmon.

4.
Histochem Cell Biol ; 157(5): 513-524, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35229169

RESUMO

Animal models and clinical studies suggest an influence of angiotensin II (AngII) on the pathogenesis of liver diseases via the renin-angiotensin system. AngII application increases portal blood pressure, reduces bile flow, and increases permeability of liver tight junctions. Establishing the subcellular localization of angiotensin II receptor type 1 (AT1R), the main AngII receptor, helps to understand the effects of AngII on the liver. We localized AT1R in situ in human and porcine liver and porcine gallbladder by immunohistochemistry. In order to do so, we characterized commercial anti-AT1R antibodies regarding their capability to recognize heterologous human AT1R in immunocytochemistry and on western blots, and to detect AT1R using overlap studies and AT1R-specific blocking peptides. In hepatocytes and canals of Hering, AT1R displayed a tram-track-like distribution, while in cholangiocytes AT1R appeared in a honeycomb-like pattern; i.e., in liver epithelia, AT1R showed an equivalent distribution to that in the apical junctional network, which seals bile canaliculi and bile ducts along the blood-bile barrier. In intrahepatic blood vessels, AT1R was most prominent in the tunica media. We confirmed AT1R localization in situ to the plasma membrane domain, particularly between tight and adherens junctions in both human and porcine hepatocytes, cholangiocytes, and gallbladder epithelial cells using different anti-AT1R antibodies. Localization of AT1R at the junctional complex could explain previously reported AngII effects and predestines AT1R as a transmitter of tight junction permeability.


Assuntos
Bile , Receptor Tipo 1 de Angiotensina , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Bile/metabolismo , Western Blotting , Humanos , Peptídeos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina , Suínos
5.
Basic Clin Pharmacol Toxicol ; 130(1): 70-83, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34665520

RESUMO

This work explored the mechanism of augmented stress-induced vascular reactivity of senescent murine femoral arteries (FAs). Mechanical and pharmacological reactivity of young (12-25 weeks, y-FA) and senescent (>104 weeks, s-FAs) femoral arteries was measured by wire myography. Expression and protein phosphorylation of selected regulatory proteins were studied by western blotting. Expression ratio of the Exon24 in/out splice isoforms of the regulatory subunit of myosin phosphatase, MYPT1 (MYPT1-Exon24 in/out), was determined by polymerase chain reaction (PCR). While the resting length-tension relationship showed no alteration, the stretch-induced-tone increased to 8.3 ± 0.9 mN in s-FA versus only 4.6 ± 0.3 mN in y-FAs. Under basal conditions, phosphorylation of the regulatory light chain of myosin at S19 was 19.2 ± 5.8% in y-FA versus 49.2 ± 12.6% in s-FA. Inhibition of endogenous NO release raised tone additionally to 10.4 ± 1.2 mN in s-FA, whereas this treatment had a negligible effect in y-FAs (4.8 ± 0.3 mN). In s-FAs, reactivity to NO donor was augmented (pD2  = -4.5 ± 0.3 in y-FA vs. -5.2 ± 0.1 in senescent). Accordingly, in s-FAs, MYPT1-Exon24-out-mRNA, which is responsible for expression of the more sensitive to protein-kinase G, leucine-zipper-positive MYPT1 isoform, was increased. The present work provides evidence that senescent murine s-FA undergoes vascular remodelling associated with increases in stretch-activated contractility and sensitivity to NO/cGMP/PKG system.


Assuntos
Artéria Femoral/metabolismo , Óxido Nítrico/metabolismo , Estresse Fisiológico/fisiologia , Remodelação Vascular/fisiologia , Fatores Etários , Animais , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Doadores de Óxido Nítrico/farmacologia , Fosforilação , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Rigidez Vascular/fisiologia
6.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502534

RESUMO

Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1 (p.cTnC-G34S) and TNNI3 (p.cTnI-D127Y) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit interactions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient's myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations.


Assuntos
Cardiomiopatias/genética , Mutação de Sentido Incorreto , Miofibrilas/metabolismo , Troponina I/genética , Adenosina Trifosfatases/metabolismo , Adulto , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Catequina/análogos & derivados , Catequina/farmacologia , Humanos , Lactente , Masculino , Microscopia Eletrônica de Transmissão , Miofibrilas/efeitos dos fármacos , Miofibrilas/ultraestrutura , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Índice de Gravidade de Doença , Simendana/farmacologia , Tropomiosina/metabolismo , Troponina I/metabolismo
7.
J Gen Physiol ; 153(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34115104

RESUMO

The actin-, myosin-, and calmodulin-binding protein caldesmon (CaD) is expressed in two splice isoforms: h-CaD, which is an integral part of the actomyosin domain of smooth muscle cells, and l-CaD, which is widely expressed and is involved in many cellular functions. Despite extensive research for many years, CaD's in vivo function has remained elusive. To explore the role of CaD in smooth muscle contraction in vivo, we generated a mutant allele that ablates both isoforms. Heterozygous animals were viable and had a normal life span, but homozygous mutants died perinatally, likely because of a persistent umbilical hernia. The herniation was associated with hypoplastic and dysmorphic abdominal wall muscles. We assessed mechanical parameters in isometrically mounted longitudinal strips of E18.5 urinary bladders and in ring preparations from abdominal aorta using wire myography. Ca2+ sensitivity was higher and relaxation rate was slower in Cald1-/- compared with Cald1+/+ skinned bladder strips. However, we observed no change in the content and phosphorylation of regulatory proteins of the contractile apparatus and myosin isoforms known to affect these contractile parameters. Intact fibers showed no difference in actin and myosin content, regardless of genotype, although KCl-induced force tended to be lower in homozygous and higher in heterozygous mutants than in WTs. Conversely, in skinned fibers, myosin content and maximal force were significantly lower in Cald1-/- than in WTs. In KO abdominal aortas, resting and U46619 elicited force were lower than in WTs. Our results are consistent with the notion that CaD impacts smooth muscle function dually by (1) acting as a molecular brake on contraction and (2) maintaining the structural integrity of the contractile machinery. Most importantly, CaD is essential for resolution of the physiological umbilical hernia and ventral body wall closure.


Assuntos
Proteínas de Ligação a Calmodulina , Bexiga Urinária , Animais , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Camundongos , Contração Muscular , Músculo Liso/metabolismo , Miosinas/metabolismo , Fosforilação
8.
Am J Physiol Renal Physiol ; 321(1): F93-F105, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34056927

RESUMO

Intrauterine growth restriction (IUGR) due to an adverse intrauterine environment predisposes to arterial hypertension and loss of kidney function. Here, we investigated whether vascular dysregulation in renal interlobar arteries (RIAs) may contribute to hypertensive glomerular damage after IUGR. In rats, IUGR was induced by bilateral uterine vessel ligation. Offspring of nonoperated rats served as controls. From postnatal day 49, blood pressure was telemetrically recorded. On postnatal day 70, we evaluated contractile function in RIAs and mesenteric arteries. In addition, blood, urine, and glomerular parameters as well as renal collagen deposition were analyzed. IUGR RIAs not only showed loss of stretch activation in 9 of 11 arteries and reduced stretch-induced myogenic tone but also showed a shift of the concentration-response relation of acetylcholine-induced relaxation toward lower concentrations. However, IUGR RIAs also exhibited augmented contractions through phenylephrine. Systemic mean arterial pressure [mean difference: 4.8 mmHg (daytime) and 5.7 mmHg (night)], mean glomerular area (IUGR: 9,754 ± 338 µm2 and control: 8,395 ± 227 µm2), and urinary protein-to-creatinine ratio (IUGR: 1.67 ± 0.13 g/g and control: 1.26 ± 0.10 g/g) were elevated after IUGR. We conclude that male IUGR rat offspring may have increased vulnerability toward hypertensive glomerular damage due to loss of myogenic tone and augmented endothelium-dependent relaxation in RIAs.NEW & NOTEWORTHY For the first time, our study presents wire myography data from renal interlobar arteries (RIAs) and mesenteric arteries of young adult rat offspring after intrauterine growth restriction (IUGR). Our data indicate that myogenic tone in RIAs is dysfunctional after IUGR. Furthermore, IUGR offspring suffer from mild arterial hypertension, glomerular hypertrophy, and increased urinary protein-to-creatinine ratio. Dysregulation of vascular tone in RIAs could be an important variable that impacts upon vulnerability toward glomerular injury after IUGR.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Hipertensão/fisiopatologia , Rim/metabolismo , Artéria Renal/fisiopatologia , Animais , Pressão Sanguínea/fisiologia , Retardo do Crescimento Fetal/fisiopatologia , Rim/efeitos dos fármacos , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Fenilefrina/farmacologia , Ratos
9.
J Gen Physiol ; 153(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33599680

RESUMO

In this study, we aimed to study the role of inorganic phosphate (Pi) in the production of oscillatory work and cross-bridge (CB) kinetics of striated muscle. We applied small-amplitude sinusoidal length oscillations to rabbit psoas single myofibrils and muscle fibers, and the resulting force responses were analyzed during maximal Ca2+ activation (pCa 4.65) at 15°C. Three exponential processes, A, B, and C, were identified from the tension transients, which were studied as functions of Pi concentration ([Pi]). In myofibrils, we found that process C, corresponding to phase 2 of step analysis during isometric contraction, is almost a perfect single exponential function compared with skinned fibers, which exhibit distributed rate constants, as described previously. The [Pi] dependence of the apparent rate constants 2πb and 2πc, and that of isometric tension, was studied to characterize the force generation and Pi release steps in the CB cycle, as well as the inhibitory effect of Pi. In contrast to skinned fibers, Pi does not accumulate in the core of myofibrils, allowing sinusoidal analysis to be performed nearly at [Pi] = 0. Process B disappeared as [Pi] approached 0 mM in myofibrils, indicating the significance of the role of Pi rebinding to CBs in the production of oscillatory work (process B). Our results also suggest that Pi competitively inhibits ATP binding to CBs, with an inhibitory dissociation constant of ∼2.6 mM. Finally, we found that the sinusoidal waveform of tension is mostly distorted by second harmonics and that this distortion is closely correlated with production of oscillatory work, indicating that the mechanism of generating force is intrinsically nonlinear. A nonlinear force generation mechanism suggests that the length-dependent intrinsic rate constant is asymmetric upon stretch and release and that there may be a ratchet mechanism involved in the CB cycle.


Assuntos
Miofibrilas , Fosfatos , Trifosfato de Adenosina , Animais , Contração Isométrica , Cinética , Contração Muscular , Coelhos
10.
Front Physiol ; 11: 516, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581830

RESUMO

Length-dependent activation of calcium-dependent myocardial force generation provides the basis for the Frank-Starling mechanism. To directly compare the effects of mutations associated with hypertrophic cardiomyopathy and dilated cardiomyopathy, the native troponin complex in skinned trabecular fibers of guinea pigs was exchanged with recombinant heterotrimeric, human, cardiac troponin complexes containing different human cardiac troponin T subunits (hcTnT): hypertrophic cardiomyopathy-associated hcTnTR130C, dilated cardiomyopathy-associated hcTnTΔK210 or the wild type hcTnT (hcTnTWT) serving as control. Force-calcium relations of exchanged fibers were explored at short fiber length defined as 110% of slack length (L 0) and long fiber length defined as 125% of L 0 (1.25 L 0). At short fiber length (1.1 L 0), calcium sensitivity of force generation expressed by -log [Ca2+] required for half-maximum force generation (pCa50) was highest for the hypertrophic cardiomyopathy-associated mutation R130C (5.657 ± 0.019), intermediate for the wild type control (5.580 ± 0.028) and lowest for the dilated cardiomyopathy-associated mutation ΔK210 (5.325 ± 0.038). Lengthening fibers from 1.1 L 0 to 1.25 L 0 increased calcium sensitivity in fibers containing hcTnTR130C (delta-pCa50 = +0.030 ± 0.010), did not alter calcium sensitivity in the wild type control (delta-pCa50 = -0.001 ± 0.010), and decreased calcium sensitivity in fibers containing hcTnTΔK210 (delta-pCa50 = -0.034 ± 0.013). Length-dependent activation indicated by the delta-pCa50 was highly significantly (P < 0.001) different between the two mutations. We hypothesize that primary effects of mutations on length-dependent activation contribute to the development of the diverging phenotypes in hypertrophic and dilated cardiomyopathy.

11.
Gen Physiol Biophys ; 39(2): 157-168, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32329443

RESUMO

Cerebral blood supply is finely tuned by regulatory mechanisms depending on vessel caliber the disruption of which contributes to the development of diseases such as vascular dementia, Alzheimer's and Parkinson 's diseases. This study scopes whether cAMP-mimetic-ligands relax young and aged murine cerebral arteries, whether this relates to the activation of PKA or Epac signaling pathways and is changed with advanced age. The hormone Urocortin-1 relaxed submaximally contracted young and old basilar arteries with a similar pD2 and DMAX (~ -8.5 and ~ 90% in both groups). In permeabilized arteries, PKA activation by 6-Bnz-cAMP or Epac activation by 8-pCPT-2'- O-Me-cAMP also induced relaxation with pD2 of -6.3 vs. -5.8 in old for PKA-ligands, and -4.4 and -4.0 in old for Epac-ligands. Furthermore, aging significantly increased submaximal Ca2+-induced force. The effect of 8-pCPT-2'-O-Me-cAMP on intact arteries was attenuated by aging or nitric oxide synthase inhibition. No relaxing effect in both age-groups was observed after treatment with PKAactivator, Sp-6-Phe-cAMPS. In conclusion, our results suggest that in intact basilar arteries relaxation induced by cAMP-mimetics refers only to the activation of Epac and is impaired by smooth muscle and endothelial aging. The study presents an interesting option allowing therapeutic discrimination between both pathways, possibly for the exclusive activation of Epac in brain circulatory system.


Assuntos
Envelhecimento , Artéria Basilar/fisiologia , AMP Cíclico/fisiologia , Endotélio/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Vasodilatação , Animais , Permeabilidade da Membrana Celular , AMP Cíclico/análogos & derivados , Proteínas Quinases Dependentes de AMP Cíclico , Camundongos , Músculo Liso/fisiologia
12.
PLoS One ; 15(3): e0229227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32182250

RESUMO

TNNI3 encoding cTnI, the inhibitory subunit of the troponin complex, is the main target for mutations leading to restrictive cardiomyopathy (RCM). Here we investigate two cTnI-R170G/W amino acid replacements, identified in infantile RCM patients, which are located in the regulatory C-terminus of cTnI. The C-terminus is thought to modulate the function of the inhibitory region of cTnI. Both cTnI-R170G/W strongly enhanced the Ca2+-sensitivity of skinned fibres, as is typical for RCM-mutations. Both mutants strongly enhanced the affinity of troponin (cTn) to tropomyosin compared to wildtype cTn, whereas binding to actin was either strengthened (R170G) or weakened (R170W). Furthermore, the stability of reconstituted thin filaments was reduced as revealed by electron microscopy. Filaments containing R170G/W appeared wavy and showed breaks. Decoration of filaments with myosin subfragment S1 was normal in the presence of R170W, but was irregular with R170G. Surprisingly, both mutants did not affect the Ca2+-dependent activation of reconstituted cardiac thin filaments. In the presence of the N-terminal fragment of cardiac myosin binding protein C (cMyBPC-C0C2) cooperativity of thin filament activation was increased only when the filaments contained wildtype cTn. No effect was observed in the presence of cTn containing R170G/W. cMyBPC-C0C2 significantly reduced binding of wildtype troponin to actin/tropomyosin, but not of both mutant cTn. Moreover, we found a direct troponin/cMyBPC-C0C2 interaction using microscale thermophoresis and identified cTnI and cTnT, but not cTnC as binding partners for cMyBPC-C0C2. Only cTn containing cTnI-R170G showed a reduced affinity towards cMyBPC-C0C2. Our results suggest that the RCM cTnI variants R170G/W impair the communication between thin and thick filament proteins and destabilize thin filaments.


Assuntos
Substituição de Aminoácidos , Cardiomiopatia Restritiva/genética , Miocárdio/metabolismo , Sarcômeros/metabolismo , Troponina I/genética , Actinas/metabolismo , Animais , Cálcio/metabolismo , Cardiomiopatia Restritiva/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Pré-Escolar , Cobaias , Humanos , Microscopia Eletrônica , Modelos Biológicos , Ligação Proteica , Tropomiosina/metabolismo
13.
J Card Fail ; 25(8): 674-685, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31212034

RESUMO

BACKGROUND: The pathogenesis of inflammatory cardiomyopathy is affected by the activation of autoimmune-mediated cascades. To study these cascades, we developed an experimental model of troponin I (TnI)-induced autoimmune myocarditis (EAM). One factor playing a pivotal role in the context of autoimmune disorders is the receptor fibroblast growth factor-inducible 14 (FN14). Thus, the impact of FN14 in the development of autoimmune myocarditis was investigated. METHODS AND RESULTS: TnI-immunization led to a significantly increased myocardial FN14 mRNA and protein expression in wild-type (wt) mice. To investigate the precise role of FN14 in EAM, FN14 knockout (ko) and wt littermates were immunized with TnI or control buffer. The animals were evaluated for cardiac parameters and indicators of myocardial injury. FN14 deficiency resulted in better cardiac performance, less myocardial inflammation, fibrosis, and cardiac damage. A lower myocardial mRNA expression of inflammatory cytokines and chemokines as well as their receptors could be demonstrated in TnI-immunized FN14ko compared to wt mice also immunized with TnI. Western blot analysis revealed a contribution of nuclear factor kappa-light-chain-enhancer of activated B cells to FN14-induced signaling cascades. CONCLUSIONS: In the pathogenesis of autoimmune myocarditis, the inflammatory response to cardiac injury is attenuated in FN14ko mice. Thus, inhibition of FN14 in patients might represent a novel therapeutic strategy in the treatment of inflammatory cardiomyopathy.


Assuntos
Doenças Autoimunes/metabolismo , Modelos Animais de Doenças , Miocardite/metabolismo , Transdução de Sinais/fisiologia , Receptor de TWEAK/deficiência , Animais , Doenças Autoimunes/imunologia , Feminino , Camundongos , Camundongos Knockout , Miocardite/imunologia
14.
Am J Pathol ; 189(3): 540-551, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593823

RESUMO

Inflammatory bowel diseases frequently cause gastrointestinal dysmotility, suggesting that they may also affect the enteric nervous system. So far, the precise mechanisms that lead to gastrointestinal dysmotility in inflammatory bowel diseases have not been elucidated. To determine the effect of CD8 T cells on gastrointestinal motility, transgenic mice expressing ovalbumin on enteric neurons were generated. In these mice, adoptive transfer of ovalbumin-specific OT-I CD8 T cells induced severe enteric ganglionitis. CD8 T cells homed to submucosal and myenteric plexus neurons, 60% of which were lost, clinically resulting in severely impaired gastrointestinal transition. Anti-interferon-γ treatment rescued neurons by preventing their up-regulation of major histocompatibility complex class I antigen, thus preserving gut motility. These preclinical murine data translated well into human gastrointestinal dysmotility. In a series of 30 colonic biopsy specimens from patients with gastrointestinal dysmotility, CD8 T cell-mediated ganglionitis was detected that was followed by severe loss of enteric neurons (74.8%). Together, the preclinical and clinical data support the concept that autoimmune CD8 T cells play an important pathogenetic role in gastrointestinal dysmotility and may destroy enteric neurons.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD8-Positivos/imunologia , Motilidade Gastrointestinal/imunologia , Doenças Inflamatórias Intestinais/imunologia , Plexo Mientérico/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Linfócitos T CD8-Positivos/patologia , Motilidade Gastrointestinal/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Transgênicos , Plexo Mientérico/patologia
15.
PLoS One ; 13(3): e0194428, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29543863

RESUMO

In skeletal muscle the coordinated actions of two mechanically coupled Ca2+ channels-the 1,4-dihydropyridine receptor (Cav1.1) and the type 1 ryanodine receptor (RYR1)-underlie the molecular mechanism of rapid cytosolic [Ca2+] increase leading to contraction. While both [Ca2+]i and contractile activity have been implicated in the regulation of myogenesis, less is known about potential specific roles of Cav1.1 and RYR1 in skeletal muscle development. In this study, we analyzed the histology and the transcriptomic changes occurring at E14.5 -the end of primary myogenesis and around the onset of intrauterine limb movement, and at E18.5 -the end of secondary myogenesis, in WT, RYR1-/-, and Cav1.1-/- murine limb skeletal muscle. At E14.5 the muscle histology of both mutants exhibited initial alterations, which became much more severe at E18.5. Immunohistological analysis also revealed higher levels of activated caspase-3 in the Cav1.1-/- muscles at E14.5, indicating an increase in apoptosis. With WT littermates as controls, microarray analyses identified 61 and 97 differentially regulated genes (DEGs) at E14.5, and 493 and 1047 DEGs at E18.5, in RYR1-/- and Cav1.1-/- samples, respectively. Gene enrichment analysis detected no overlap in the affected biological processes and pathways in the two mutants at E14.5, whereas at E18.5 there was a significant overlap of DEGs in both mutants, affecting predominantly processes linked to muscle contraction. Moreover, the E18.5 vs. E14.5 comparison revealed multiple genotype-specific DEGs involved in contraction, cell cycle and miRNA-mediated signaling in WT, neuronal and bone development in RYR1-/-, and lipid metabolism in Cav1.1-/- samples. Taken together, our study reveals discrete changes in the global transcriptome occurring in limb skeletal muscle from E14.5 to E18.5 in WT, RYR1-/- and Cav1.1-/- mice. Our results suggest distinct functional roles for RYR1 and Cav1.1 in skeletal primary and secondary myogenesis.


Assuntos
Canais de Cálcio Tipo L/genética , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Transcriptoma , Animais , Canais de Cálcio Tipo L/deficiência , Ontologia Genética , Membro Posterior/embriologia , Membro Posterior/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Desenvolvimento Muscular/genética , Músculo Esquelético/embriologia , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Fatores de Tempo
17.
Circ Res ; 121(2): 149-161, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28588038

RESUMO

RATIONALE: Decreasing Ca2+ sensitivity of vascular smooth muscle (VSM) allows for vasodilation without lowering of cytosolic Ca2+. This may be particularly important in states requiring maintained dilation, such as hypoxia. AMP-related kinase (AMPK) is an important cellular energy sensor in VSM. Regulation of Ca2+ sensitivity usually is attributed to myosin light chain phosphatase activity, but findings in non-VSM identified changes in the actin cytoskeleton. The potential role of AMPK in this setting is widely unknown. OBJECTIVE: To assess the influence of AMPK on the actin cytoskeleton in VSM of resistance arteries with regard to potential Ca2+ desensitization of VSM contractile apparatus. METHODS AND RESULTS: AMPK induced a slowly developing dilation at unchanged cytosolic Ca2+ levels in potassium chloride-constricted intact arteries isolated from mouse mesenteric tissue. This dilation was not associated with changes in phosphorylation of myosin light chain or of myosin light chain phosphatase regulatory subunit. Using ultracentrifugation and confocal microscopy, we found that AMPK induced depolymerization of F-actin (filamentous actin). Imaging of arteries from LifeAct mice showed F-actin rarefaction in the midcellular portion of VSM. Immunoblotting revealed that this was associated with activation of the actin severing factor cofilin. Coimmunoprecipitation experiments indicated that AMPK leads to the liberation of cofilin from 14-3-3 protein. CONCLUSIONS: AMPK induces actin depolymerization, which reduces vascular tone and the response to vasoconstrictors. Our findings demonstrate a new role of AMPK in the control of actin cytoskeletal dynamics, potentially allowing for long-term dilation of microvessels without substantial changes in cytosolic Ca2+.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Citoesqueleto de Actina/metabolismo , Artérias/metabolismo , Cálcio/metabolismo , Resistência Vascular/fisiologia , Vasodilatação/fisiologia , Proteínas Quinases Ativadas por AMP/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Artérias/efeitos dos fármacos , Cálcio/farmacologia , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasodilatação/efeitos dos fármacos
18.
Sci Rep ; 7(1): 1391, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469177

RESUMO

In striated muscle, desmin intermediate filaments interlink the contractile myofibrillar apparatus with mitochondria, nuclei, and the sarcolemma. The desmin network's pivotal role in myocytes is evident since mutations in the human desmin gene cause severe myopathies and cardiomyopathies. Here, we investigated skeletal muscle pathology in myofibers and myofibrils isolated from young hetero- and homozygous R349P desmin knock-in mice, which carry the orthologue of the most frequent human desmin missense mutation R350P. We demonstrate that mutant desmin alters myofibrillar cytoarchitecture, markedly disrupts the lateral sarcomere lattice and distorts myofibrillar angular axial orientation. Biomechanical assessment revealed a high predisposition to stretch-induced damage in fiber bundles of R349P mice. Notably, Ca2+-sensitivity and passive myofibrillar tension were decreased in heterozygous fiber bundles, but increased in homozygous fiber bundles compared to wildtype mice. In a parallel approach, we generated and subsequently subjected immortalized heterozygous R349P desmin knock-in myoblasts to magnetic tweezer experiments that revealed a significantly increased sarcolemmal lateral stiffness. Our data suggest that mutated desmin already markedly impedes myocyte structure and function at pre-symptomatic stages of myofibrillar myopathies.


Assuntos
Desmina/fisiologia , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/fisiologia , Miofibrilas/fisiologia , Animais , Fenômenos Biomecânicos , Sinalização do Cálcio , Células Cultivadas , Desmina/genética , Técnicas de Introdução de Genes , Camundongos Transgênicos , Contração Muscular , Músculo Esquelético/patologia , Mutação , Miofibrilas/patologia
19.
J Cereb Blood Flow Metab ; 37(3): 1014-1029, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27193035

RESUMO

Aging causes major alterations of all components of the neurovascular unit and compromises brain blood supply. Here, we tested how aging affects vascular reactivity in basilar arteries from young (<10 weeks; y-BA), old (>22 months; o-BA) and old (>22 months) heterozygous MYPT1-T-696A/+ knock-in mice. In isometrically mounted o-BA, media thickness was increased by ∼10% while the passive length tension relations were not altered. Endothelial denudation or pan-NOS inhibition (100 µmol/L L-NAME) increased the basal tone by 11% in y-BA and 23% in o-BA, while inhibition of nNOS (1 µmol/L L-NPA) induced ∼10% increase in both ages. eNOS expression was ∼2-fold higher in o-BA. In o-BA, U46619-induced force was augmented (pEC50 ∼6.9 vs. pEC50 ∼6.5) while responsiveness to DEA-NONOate, electrical field stimulation or nicotine was decreased. Basal phosphorylation of MLC20-S19 and MYPT1-T-853 was higher in o-BA and was reversed by apocynin. Furthermore, permeabilized o-BA showed enhanced Ca2+-sensitivity. Old T-696A/+ BA displayed a reduced phosphorylation of MYPT1-T696 and MLC20, a lower basal tone in response to L-NAME and a reduced eNOS expression. The results indicate that the vascular hypercontractility found in o-BA is mediated by inhibition of MLCP and is partially compensated by an upregulation of endothelial NO release.


Assuntos
Acetofenonas/farmacologia , Envelhecimento , Artéria Basilar/fisiologia , Músculo Liso Vascular/fisiologia , Fosfatase de Miosina-de-Cadeia-Leve/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Inibidores Enzimáticos , Camundongos , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Fosforilação , Subunidades Proteicas/metabolismo , Vasoconstrição
20.
J Am Heart Assoc ; 5(6)2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27353610

RESUMO

BACKGROUND: The postnatal development of myofibrillar mechanics, a major determinant of heart function, is unknown in pediatric patients with tetralogy of Fallot and related structural heart defects. We therefore determined the mechanical properties of myofibrils isolated from right ventricular tissue samples from such patients in relation to the developmental changes of the isoforms expression pattern of key sarcomere proteins involved in the contractile process. METHODS AND RESULTS: Tissue samples from the infundibulum obtained during surgery from 25 patients (age range 15 days to 11 years, median 7 months) were split into half for mechanical investigations and expression analysis of titin, myosin heavy and light chain 1, troponin-T, and troponin-I. Of these proteins, fetal isoforms of only myosin light chain 1 (ALC-1) and troponin-I (ssTnI) were highly expressed in neonates, amounting to, respectively, 40% and 80%, while the other proteins had switched to the adult isoforms before or around birth. ALC-1 and ssTnI expression subsequently declined monoexponentially with a halftime of 4.3 and 5.8 months, respectively. Coincident with the expression of ssTnI, Ca(2+) sensitivity of contraction was high in neonates and subsequently declined in parallel with the decline in ssTnI expression. Passive tension positively correlated with Ca(2+) sensitivity but not with titin expression. Contraction kinetics, maximal Ca(2+)-activated force, and the fast phase of the biphasic relaxation positively correlated with the expression of ALC-1. CONCLUSIONS: The developmental changes in myofibrillar biomechanics can be ascribed to fetal-to-adult isoform transition of key sarcomeric proteins, which evolves regardless of the specific congenital cardiac malformations in our pediatric patients.


Assuntos
Cardiopatias Congênitas/fisiopatologia , Miofibrilas/fisiologia , Fenômenos Biomecânicos/fisiologia , Criança , Pré-Escolar , Conectina/metabolismo , Coração/crescimento & desenvolvimento , Humanos , Lactente , Recém-Nascido , Proteínas Musculares/fisiologia , Contração Miocárdica/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Leves de Miosina/metabolismo , Sarcômeros/fisiologia , Troponina I/metabolismo , Troponina T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...