Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38798587

RESUMO

Mitochondrial diseases (MtD) represent a significant public health challenge due to their heterogenous clinical presentation, often severe and progressive symptoms, and the lack of effective therapies. Environmental exposures, such bacterial and viral infection, can further compromise mitochondrial function and exacerbate the progression of MtD. Infections in MtD patients more frequently progress to sepsis, pneumonia, and other detrimental inflammatory endpoints. However, the underlying immune alterations that enhance immunopathology in MtD remain unclear, constituting a key gap in knowledge that complicates treatment and increases mortality in this population. Here we employ in vitro and in vivo approaches to clarify the molecular and cellular basis for innate immune hyperactivity in models of polymerase gamma (Polg)-related MtD. We reveal that type I interferon (IFN-I)-mediated upregulation of caspase-11 and guanylate-binding proteins (GBPs) increase macrophage sensing of the opportunistic microbe Pseudomonas aeruginosa (PA) in Polg mutant mice. Furthermore, we show that excessive macrophage cytokine secretion and pyroptotic cell death contribute to lung inflammation and morbidity after infection with PA. Our work sheds new light on innate immune dysregulation in MtD and reveals potential targets for limiting infection- and inflammation-related complications in Polg-related MtD.

2.
Mol Pharm ; 20(12): 6140-6150, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37939020

RESUMO

Glioblastoma (GBM) is a highly aggressive form of brain cancer with a poor prognosis and limited treatment options. The ALK and c-MET inhibitor Crizotinib has demonstrated preclinical therapeutic potential for newly diagnosed GBM, although its efficacy is limited by poor penetration of the blood brain barrier. Here, we identify Crizotinib as a novel inhibitor of nuclear factor-κB (NF-κB)-inducing kinase, which is a key regulator of GBM growth and proliferation. We further show that the conjugation of Crizotinib to a heptamethine cyanine dye, or a near-infrared dye (IR-Crizotinib), attenuated glioma cell proliferation and survival in vitro to a greater extent than unconjugated Crizotinib. Moreover, we observed increased IR-Crizotinib localization to orthotopic mouse xenograft GBM tumors, which resulted in impaired tumor growth in vivo. Overall, IR-Crizotinib exhibited improved intracranial chemotherapeutic delivery and tumor localization with concurrent inhibition of NIK and noncanonical NF-κB signaling, thereby reducing glioma growth in vitro, as well as in vivo, and increasing survival in a preclinical rodent model.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Camundongos , Animais , Humanos , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , NF-kappa B , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioblastoma/tratamento farmacológico , Quinase Induzida por NF-kappaB
3.
Sci Rep ; 13(1): 13093, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567906

RESUMO

The prognosis of high-grade gliomas, such as glioblastoma multiforme (GBM), is extremely poor due to the highly invasive nature of these aggressive cancers. Previous work has demonstrated that TNF-weak like factor (TWEAK) induction of the noncanonical NF-κB pathway promotes the invasiveness of GBM cells in an NF-κB-inducing kinase (NIK)-dependent manner. While NIK activity is predominantly regulated at the posttranslational level, we show here that NIK (MAP3K14) is upregulated at the transcriptional level in invading cell populations, with the highest NIK expression observed in the most invasive cells. GBM cells with high induction of NIK gene expression demonstrate characteristics of collective invasion, facilitating invasion of neighboring cells. Furthermore, we demonstrate that the E2F transcription factors E2F4 and E2F5 directly regulate NIK transcription and are required to promote GBM cell invasion in response to TWEAK. Overall, our findings demonstrate that transcriptional induction of NIK facilitates collective cell migration and invasion, thereby promoting GBM pathogenesis.


Assuntos
Glioblastoma , Humanos , Fator de Transcrição E2F4 , Glioblastoma/genética , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Quinase Induzida por NF-kappaB
4.
Res Sq ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945490

RESUMO

The prognosis of high-grade gliomas, such as glioblastoma multiforme (GBM), is extremely poor due to the highly invasive nature of these aggressive cancers. Previous work has demonstrated that TNF-weak like factor (TWEAK) induction of the noncanonical NF-κB pathway increases the invasiveness of glioma cells in an NF-κB-inducing kinase (NIK)-dependent manner. While NIK activity is predominantly regulated at the posttranslational level, we show here that NIK ( MAP3K14 ) is upregulated at the transcriptional level in invading cell populations, with the highest expression observed in the most invasive cells. Glioma cells with high induction of NIK gene expression demonstrate characteristics of collective invasion, facilitating invasion of neighboring cells. Furthermore, we demonstrate that the E2F transcription factors E2F4 and E2F5 directly regulate NIK transcription and are required to promote glioma cell invasion in response to TWEAK. Overall, our findings demonstrate that transcriptional induction of NIK facilitates collective cell migration and invasion, thereby promoting glioma pathogenesis.

5.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166682, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878304

RESUMO

NF-κB-inducing kinase (NIK) is an essential upstream inducer of noncanonical NF-κB signaling and a critical regulator of immunity and inflammation. Our recent work has demonstrated that NIK regulates mitochondrial respiration and adaptive metabolic responses in cancer and innate immune cells. However, it is not clear whether NIK also has roles in regulating systemic metabolism. In this study, we demonstrate that NIK has local and systemic effects on developmental and metabolic processes. Our findings show that NIK-deficient mice exhibit reduced adiposity, as well as elevated energy expenditure both basally, and under the stress of a high-fat diet. Moreover, we identify NF-κB-independent and -dependent functions for NIK in white adipose tissue metabolism and development. Specifically, we found that in an NF-κB-independent manner NIK is required for maintaining mitochondrial fitness, as NIK-deficient adipocytes have impaired mitochondrial membrane potential and spare respiratory capacity. In addition to mitochondrial exhaustion, NIK-deficient adipocytes and ex vivo adipose tissue exhibit a compensatory upregulation of glycolysis to meet bioenergetic demands. Finally, while NIK regulation of mitochondrial metabolism in preadipocytes is NF-κB-independent, we demonstrate that NIK has a complementary role in adipocyte differentiation that requires activation of RelB and the noncanonical NF-κB pathway. Collectively, these data demonstrate that NIK has critical roles in local and systemic development and metabolism. Our findings establish NIK as an important regulator of organelle, cell, and systemic metabolic homeostasis, suggesting that metabolic dysfunction may be an important and unappreciated component of immune disorders and inflammatory diseases arising from NIK deficiency.


Assuntos
NF-kappa B , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Homeostase , NF-kappa B/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Quinase Induzida por NF-kappaB
6.
Cell Death Dis ; 12(3): 271, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723235

RESUMO

Cancers, including glioblastoma multiforme (GBM), undergo coordinated reprogramming of metabolic pathways that control glycolysis and oxidative phosphorylation (OXPHOS) to promote tumor growth in diverse tumor microenvironments. Adaptation to limited nutrient availability in the microenvironment is associated with remodeling of mitochondrial morphology and bioenergetic capacity. We recently demonstrated that NF-κB-inducing kinase (NIK) regulates mitochondrial morphology to promote GBM cell invasion. Here, we show that NIK is recruited to the outer membrane of dividing mitochondria with the master fission regulator, Dynamin-related protein1 (DRP1). Moreover, glucose deprivation-mediated metabolic shift to OXPHOS increases fission and mitochondrial localization of both NIK and DRP1. NIK deficiency results in decreased mitochondrial respiration, ATP production, and spare respiratory capacity (SRC), a critical measure of mitochondrial fitness. Although IκB kinase α and ß (IKKα/ß) and NIK are required for OXPHOS in high glucose media, only NIK is required to increase SRC under glucose deprivation. Consistent with an IKK-independent role for NIK in regulating metabolism, we show that NIK phosphorylates DRP1-S616 in vitro and in vivo. Notably, a constitutively active DRP1-S616E mutant rescues oxidative metabolism, invasiveness, and tumorigenic potential in NIK-/- cells without inducing IKK. Thus, we establish that NIK is critical for bioenergetic stress responses to promote GBM cell pathogenesis independently of IKK. Our data suggest that targeting NIK may be used to exploit metabolic vulnerabilities and improve therapeutic strategies for GBM.


Assuntos
Neoplasias Encefálicas/enzimologia , Metabolismo Energético , Glioblastoma/enzimologia , Mitocôndrias/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dinaminas/genética , Dinaminas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Microambiente Tumoral , Quinase Induzida por NF-kappaB
7.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187137

RESUMO

NF-κB-inducing kinase (NIK), the essential upstream kinase, which regulates activation of the noncanonical NF-κB pathway, has important roles in regulating immunity and inflammation. In addition, NIK is vital for maintaining cellular health through its control of fundamental cellular processes, including differentiation, growth, and cell survival. As such aberrant expression or regulation of NIK is associated with several disease states. For example, loss of NIK leads to severe immune defects, while the overexpression of NIK is observed in inflammatory diseases, metabolic disorders, and the development and progression of cancer. This review discusses recent studies investigating the therapeutic potential of NIK inhibitors in various diseases.


Assuntos
Imunidade/fisiologia , Inflamação/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sobrevivência Celular/fisiologia , Humanos , Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Quinase Induzida por NF-kappaB
8.
J Med Chem ; 62(20): 9236-9245, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31469566

RESUMO

A small subset of heptamethine dyes (cyanine-7 or Cy7) share an intriguing characteristic: preferential tumor accumulation and retention. These dyes absorb in the near-infrared (NIR) region (above 750 nm) and perform active targeting to deliver therapeutic and toxic cargoes to various tumor models in vivo. In this work, four heptamethines 1 were synthesized, which have a gemcitabine fragment attached to the meso-position of the Cy7 core. Theranostic agent 1a was discovered that localized in glioblastoma tumor cells, has absorption maxima in NIR region, and showed similar therapeutic effect to gemcitabine but at one-third the molar dose.


Assuntos
Carbocianinas/química , Desoxicitidina/análogos & derivados , Nanomedicina Teranóstica , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/química , Estabilidade de Medicamentos , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Distribuição Tecidual , Transplante Heterólogo , Gencitabina
9.
ChemMedChem ; 14(17): 1575-1579, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31322832

RESUMO

We hypothesized that conjugation of the near-infrared dye MHI-148 with the anti-leukemia drug dasatinib might produce a potential theranostic for glioblastoma. In fact, the conjugate was found to bind the kinases Src and Lyn, and to inhibit the viability of a glioblastoma cell line with significantly greater potency than dasatinib alone, MHI-148 alone, or a mixture of dasatinib and MHI-148 at the same concentration. It was also used to successfully image a subcutaneous glioblastoma tumor in vivo.


Assuntos
Antineoplásicos/uso terapêutico , Carbocianinas/uso terapêutico , Dasatinibe/uso terapêutico , Corantes Fluorescentes/uso terapêutico , Glioblastoma/tratamento farmacológico , Indóis/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Antineoplásicos/síntese química , Carbocianinas/química , Linhagem Celular Tumoral , Dasatinibe/síntese química , Desenho de Fármacos , Feminino , Corantes Fluorescentes/síntese química , Humanos , Indóis/síntese química , Indóis/química , Camundongos Nus , Inibidores de Proteínas Quinases/síntese química , Nanomedicina Teranóstica/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...