Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 6(6): e0105521, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34846167

RESUMO

Mutations conferring resistance to one antibiotic can increase (cross-resistance) or decrease (collateral sensitivity) resistance to others. Antibiotic combinations displaying collateral sensitivity could be used in treatments that slow resistance evolution. However, lab-to-clinic translation requires understanding whether collateral effects are robust across different environmental conditions. Here, we isolated and characterized resistant mutants of Escherichia coli using five antibiotics, before measuring collateral effects on resistance to other paired antibiotics. During both isolation and phenotyping, we varied conditions in ways relevant in nature (pH, temperature, and bile). This revealed that local abiotic conditions modified expression of resistance against both the antibiotic used during isolation and other antibiotics. Consequently, local conditions influenced collateral sensitivity in two ways: by favoring different sets of mutants (with different collateral sensitivities) and by modifying expression of collateral effects for individual mutants. These results place collateral sensitivity in the context of environmental variation, with important implications for translation to real-world applications. IMPORTANCE When bacteria become resistant to an antibiotic, the genetic changes involved sometimes increase (cross-resistance) or decrease (collateral sensitivity) their resistance to other antibiotics. Antibiotic combinations showing repeatable collateral sensitivity could be used in treatment to slow resistance evolution. However, collateral sensitivity interactions may depend on the local environmental conditions that bacteria experience, potentially reducing repeatability and clinical application. Here, we show that variation in local conditions (pH, temperature, and bile salts) can influence collateral sensitivity in two ways: by favoring different sets of mutants during bacterial resistance evolution (with different collateral sensitivities to other antibiotics) and by modifying expression of collateral effects for individual mutants. This suggests that translation from the lab to the clinic of new approaches exploiting collateral sensitivity will be influenced by local abiotic conditions.

2.
Evol Appl ; 14(5): 1314-1327, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025770

RESUMO

With rising antibiotic resistance, alternative treatments for communicable diseases are increasingly relevant. One possible alternative for some types of infections is honey, used in wound care since before 2000 BCE and more recently in licensed, medical-grade products. However, it is unclear whether medical application of honey results in the evolution of bacterial honey resistance and whether this has collateral effects on other bacterial traits such as antibiotic resistance. Here, we used single-step screening assays and serial transfer at increasing concentrations to isolate honey-resistant mutants of Escherichia coli. We only detected bacteria with consistently increased resistance to the honey they evolved in for two of the four tested honey products, and the observed increases were small (maximum twofold increase in IC90). Genomic sequencing and experiments with single-gene knockouts showed a key mechanism by which bacteria increased their honey resistance was by mutating genes involved in detoxifying methylglyoxal, which contributes to the antibacterial activity of Leptospermum honeys. Crucially, we found no evidence that honey adaptation conferred cross-resistance or collateral sensitivity against nine antibiotics from six different classes. These results reveal constraints on bacterial adaptation to different types of honey, improving our ability to predict downstream consequences of wider honey application in medicine.

3.
Proc Biol Sci ; 288(1947): 20203106, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33757361

RESUMO

Biological invasions can alter ecosystem stability and function, and predicting what happens when a new species or strain arrives remains a major challenge in ecology. In the mammalian gastrointestinal tract, susceptibility of the resident microbial community to invasion by pathogens has important implications for host health. However, at the community level, it is unclear whether susceptibility to invasion depends mostly on resident community composition (which microbes are present), or also on local abiotic conditions (such as nutrient status). Here, we used a gut microcosm system to disentangle some of the drivers of susceptibility to invasion in microbial communities sampled from humans. We found resident microbial communities inhibited an invading Escherichia coli strain, compared to community-free control treatments, sometimes excluding the invader completely (colonization resistance). These effects were stronger at later time points, when we also detected altered community composition and nutrient availability. By separating these two components (microbial community and abiotic environment), we found taxonomic composition played a crucial role in suppressing invasion, but this depended critically on local abiotic conditions (adapted communities were more suppressive in nutrient-depleted conditions). This helps predict when resident communities will be most susceptible to invasion, with implications for optimizing treatments based on microbiota management.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Ecologia , Humanos
4.
ISME J ; 15(9): 2809-2812, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33712700

RESUMO

In light of their adverse impacts on resident microbial communities, it is widely predicted that broad-spectrum antibiotics can promote the spread of resistance by releasing resistant strains from competition with other strains and species. We investigated the competitive suppression of a resistant strain of Escherichia coli inoculated into human-associated communities in the presence and absence of the broad and narrow spectrum antibiotics rifampicin and polymyxin B, respectively. We found strong evidence of community-level suppression of the resistant strain in the absence of antibiotics and, despite large changes in community composition and abundance following rifampicin exposure, suppression of the invading resistant strain was maintained in both antibiotic treatments. Instead, the strength of competitive suppression was more strongly associated with the source community (stool sample from individual human donor). This suggests microbiome composition strongly influences the competitive suppression of antibiotic-resistant strains, but at least some antibiotic-associated disruption can be tolerated before competitive release is observed. A deeper understanding of this association will aid the development of ecologically-aware strategies for managing antibiotic resistance.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos , Escherichia coli/genética , Humanos
5.
PLoS Biol ; 18(4): e3000465, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32310938

RESUMO

Countering the rise of antibiotic-resistant pathogens requires improved understanding of how resistance emerges and spreads in individual species, which are often embedded in complex microbial communities such as the human gut microbiome. Interactions with other microorganisms in such communities might suppress growth and resistance evolution of individual species (e.g., via resource competition) but could also potentially accelerate resistance evolution via horizontal transfer of resistance genes. It remains unclear how these different effects balance out, partly because it is difficult to observe them directly. Here, we used a gut microcosm approach to quantify the effect of three human gut microbiome communities on growth and resistance evolution of a focal strain of Escherichia coli. We found the resident microbial communities not only suppressed growth and colonisation by focal E. coli but also prevented it from evolving antibiotic resistance upon exposure to a beta-lactam antibiotic. With samples from all three human donors, our focal E. coli strain only evolved antibiotic resistance in the absence of the resident microbial community, even though we found resistance genes, including a highly effective resistance plasmid, in resident microbial communities. We identified physical constraints on plasmid transfer that can explain why our focal strain failed to acquire some of these beneficial resistance genes, and we found some chromosomal resistance mutations were only beneficial in the absence of the resident microbiota. This suggests, depending on in situ gene transfer dynamics, interactions with resident microbiota can inhibit antibiotic-resistance evolution of individual species.


Assuntos
Farmacorresistência Bacteriana/fisiologia , Escherichia coli K12/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Ampicilina/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli K12/genética , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/fisiologia , Proteínas de Escherichia coli/genética , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Mutação , Plasmídeos
6.
Environ Microbiol ; 22(7): 2664-2679, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32162766

RESUMO

Bacteria in nature often encounter non-antibiotic antibacterials (NAAs), such as disinfectants and heavy metals, and they can evolve resistance via mechanisms that are also involved in antibiotic resistance. Understanding whether susceptibility to different types of antibacterials is non-randomly associated across natural and clinical bacteria is therefore important for predicting the spread of resistance, yet there is no consensus about the extent of such associations or underlying mechanisms. We tested for associations between susceptibility phenotypes of 93 natural and clinical Escherichia coli isolates to various NAAs and antibiotics. Across all compound combinations, we detected a small number of non-random associations, including a trio of positive associations among chloramphenicol, triclosan and benzalkonium chloride. We investigated genetic mechanisms that can explain such associations using genomic information, genetic knockouts and experimental evolution. This revealed some mutations that are selected for by experimental exposure to one compound and confer cross-resistance to other compounds. Surprisingly, these interactions were asymmetric: selection for chloramphenicol resistance conferred cross-resistance to triclosan and benzalkonium chloride, but selection for triclosan resistance did not confer cross-resistance to other compounds. These results identify genetic changes involved in variable cross-resistance across antibiotics and NAAs, potentially contributing to associations in natural and clinical bacteria.


Assuntos
Antibacterianos/farmacologia , Desinfetantes/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Metais Pesados/farmacologia , Compostos de Benzalcônio/farmacologia , Cloranfenicol/farmacologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Triclosan/farmacologia
7.
mBio ; 8(5)2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089428

RESUMO

The spread of antibiotic resistance is driving interest in new approaches to control bacterial pathogens. This includes applying multiple antibiotics strategically, using bacteriophages against antibiotic-resistant bacteria, and combining both types of antibacterial agents. All these approaches rely on or are impacted by associations among resistance phenotypes (where bacteria resistant to one antibacterial agent are also relatively susceptible or resistant to others). Experiments with laboratory strains have shown strong associations between some resistance phenotypes, but we lack a quantitative understanding of associations among antibiotic and phage resistance phenotypes in natural and clinical populations. To address this, we measured resistance to various antibiotics and bacteriophages for 94 natural and clinical Escherichia coli isolates. We found several positive associations between resistance phenotypes across isolates. Associations were on average stronger for antibacterial agents of the same type (antibiotic-antibiotic or phage-phage) than different types (antibiotic-phage). Plasmid profiles and genetic knockouts suggested that such associations can result from both colocalization of resistance genes and pleiotropic effects of individual resistance mechanisms, including one case of antibiotic-phage cross-resistance. Antibiotic resistance was predicted by core genome phylogeny and plasmid profile, but phage resistance was predicted only by core genome phylogeny. Finally, we used observed associations to predict genes involved in a previously uncharacterized phage resistance mechanism, which we verified using experimental evolution. Our data suggest that susceptibility to phages and antibiotics are evolving largely independently, and unlike in experiments with lab strains, negative associations between antibiotic resistance phenotypes in nature are rare. This is relevant for treatment scenarios where bacteria encounter multiple antibacterial agents.IMPORTANCE Rising antibiotic resistance is making it harder to treat bacterial infections. Whether resistance to a given antibiotic spreads or declines is influenced by whether it is associated with altered susceptibility to other antibiotics or other stressors that bacteria encounter in nature, such as bacteriophages (viruses that infect bacteria). We used natural and clinical isolates of Escherichia coli, an abundant species and key pathogen, to characterize associations among resistance phenotypes to various antibiotics and bacteriophages. We found associations between some resistance phenotypes, and in contrast to past work with laboratory strains, they were exclusively positive. Analysis of bacterial genome sequences and horizontally transferred genetic elements (plasmids) helped to explain this, as well as our finding that there was no overall association between antibiotic resistance and bacteriophage resistance profiles across isolates. This improves our understanding of resistance evolution in nature, potentially informing new rational therapies that combine different antibacterials, including bacteriophages.


Assuntos
Antibacterianos/farmacologia , Colífagos/fisiologia , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/virologia , Animais , Escherichia coli/genética , Escherichia coli/patogenicidade , Evolução Molecular , Genoma Bacteriano/efeitos dos fármacos , Humanos , Terapia por Fagos , Fenótipo , Plasmídeos , Receptores Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...