Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Digestion ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350430

RESUMO

BACKGROUND: Stress and lifestyle factors impact the course of Crohn's Disease (CD). Our primary objective was to assess whether patients with CD benefit from a mind-body-medicine stress management and lifestyle modification (MBM) program. METHODS: This 9-month two-arm pilot trial was conducted in Bamberg, Germany (2020-2021). Patients (18-75 years) with mild to moderate activity of CD and stable medication were enrolled and randomly assigned to either a 10-week MBM program (intervention group, IG) or a single 90-minutes education session (waiting list control group, CG). Primary endpoints were quality of life (IBDQ) and disease activity (HBI). Secondary endpoints were emotional distress, core self-evaluation, and inflammatory biomarkers 3 and 9 months after baseline assessment. RESULTS: We analysed data from thirty-seven patients (IG: n=19, mean±SD age 49.6±13.1 years, 68% female; CG: 18, 46.8±11.4, 67% female). Immediately after the intervention, 79% (IG) and 44% (CG) experienced a clinically relevant improvement (IBDQ score ≥16 points). This was similar after 9 months (63% vs 44%). There was no difference in disease activity (3 months: p=.082, 95%CI -1.3-2.6; 9 months: p=.251, 95%CI -1.2-2.5). Secondary outcomes indicated improvements in emotional distress, core self-evaluation, erythrocyte sedimentation rate after three and in emotional distress, T-cell-profiling in the blood, and fecal lactoferrin and calprotectin group after 9 months in the intervention group. CONCLUSION: Our study suggested benefits of a multimodal stress management and lifestyle modification program for patients with CD. Larger trials are needed to determine if the program can supplement or at least partially replace pharmacological treatment approaches. CLINICALTRIALS: gov ID: NCT05182645.

2.
Z Gastroenterol ; 59(10): 1068-1077, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34157755

RESUMO

BACKGROUND AND AIMS: Progressive legalization and increasing utilization of medical cannabis open up potential new applications, including for inflammatory bowel disease (IBD). This study aimed to collect current figures on the use of and experience with cannabis among IBD patients in Germany. METHODS: A 71-item questionnaire was mailed to a randomly selected representative sample of 1000 IBD patients. RESULTS: Questionnaires were returned by 417 patients (mean age 49.1 ±â€Š17.0 years; 55.8 % women; 43.4 % ulcerative colitis and 54.7 % Crohn's disease). Seventy-three respondents (17.5 %) stated past cannabis use for recreational purposes, while 12 users mentioned usage at the time the questionnaire was completed (2.9 %). Seventeen patients (4.1 %) indicated past use of cannabis, and 18 participants (4.3 %) reported current use of cannabis to treat IBD. Perceived benefits of cannabis use by its users included reduced abdominal pain, improved sleep quality, and relief of unease and worry. They reported lower quality of life and higher levels of anxiety or depression than non-users. Of notice, 52.9 % of cannabis users obtained their cannabis from the black market. A total of 76.5 % of former and 50 % of current users did not report their cannabis use to the physician. CONCLUSION: This survey reveals the largest data set on cannabis use among IBD patients in Germany, with the potential for further research. Cannabis is mainly procured from the black market, with unknown quality.


Assuntos
Cannabis , Colite Ulcerativa , Doenças Inflamatórias Intestinais , Adulto , Idoso , Estudos Transversais , Alemanha/epidemiologia , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/epidemiologia , Pessoa de Meia-Idade , Qualidade de Vida
3.
J Clin Invest ; 130(11): 6093-6108, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32780722

RESUMO

Recent genome-wide association studies (GWAS) identified DUSP8, encoding a dual-specificity phosphatase targeting mitogen-activated protein kinases, as a type 2 diabetes (T2D) risk gene. Here, we reveal that Dusp8 is a gatekeeper in the hypothalamic control of glucose homeostasis in mice and humans. Male, but not female, Dusp8 loss-of-function mice, either with global or corticotropin-releasing hormone neuron-specific deletion, had impaired systemic glucose tolerance and insulin sensitivity when exposed to high-fat diet (HFD). Mechanistically, we found impaired hypothalamic-pituitary-adrenal axis feedback, blunted sympathetic responsiveness, and chronically elevated corticosterone levels driven by hypothalamic hyperactivation of Jnk signaling. Accordingly, global Jnk1 ablation, AAV-mediated Dusp8 overexpression in the mediobasal hypothalamus, or metyrapone-induced chemical adrenalectomy rescued the impaired glucose homeostasis of obese male Dusp8-KO mice, respectively. The sex-specific role of murine Dusp8 in governing hypothalamic Jnk signaling, insulin sensitivity, and systemic glucose tolerance was consistent with functional MRI data in human volunteers that revealed an association of the DUSP8 rs2334499 risk variant with hypothalamic insulin resistance in men. Further, expression of DUSP8 was increased in the infundibular nucleus of T2D humans. In summary, our findings suggest the GWAS-identified gene Dusp8 as a novel hypothalamic factor that plays a functional role in the etiology of T2D.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 2/enzimologia , Fosfatases de Especificidade Dupla/metabolismo , Hipotálamo/enzimologia , Resistência à Insulina , MAP Quinase Quinase 4/metabolismo , Transdução de Sinais , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Fosfatases de Especificidade Dupla/genética , MAP Quinase Quinase 4/genética , Camundongos , Camundongos Knockout
4.
Mol Metab ; 24: 149-155, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30979678

RESUMO

OBJECTIVE: Obesity has been linked to an inflammation like state in the hypothalamus, mainly characterized by reactive gliosis (RG) of astrocytes and microglia. Here, using two diet models or pharmacological treatment, we assessed the effects of mild and drastic weight loss on RG, in the context of high-fat diet (HFD) induced obesity. METHODS: We subjected HFD-induced obese (DIO) male C57BL/6J mice to a weight loss intervention with a switch to standard chow, calorie restriction (CR), or treatment with the Glp1 receptor agonist Exendin-4 (EX4). The severity of RG was estimated by an ordinal scoring system based on fluorescence intensities of glial fibrillary acidic protein, ionized calcium-binding adapter molecule 1 positive (Iba1), cell numbers, and morphological characteristics. RESULTS: In contrast to previous reports, DIO mice fed chronically with HFD showed no differences in microglial or astrocytic RG, compared to chow controls. Moreover, mild or profound weight loss had no impact on microglial RG. However, astrocyte RG was increased in CR and EX4 groups compared to chow fed animals and strongly correlated to body weight loss. Profound weight loss by either CR or EX4 was further linked to increased levels of circulating non-esterified free fatty acids. CONCLUSIONS: Overall, our data demonstrate that in a chronically obese state, astrocyte and microglial RG is indifferent from that observed in age-matched chow controls. Nonetheless, profound acute weight loss can induce astrocyte RG in the hypothalamic arcuate nucleus, possibly due to increased circulating NEFAs. This suggests that astrocytes may sense acute changes to both the dietary environment and body weight.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Gliose/etiologia , Obesidade/tratamento farmacológico , Redução de Peso , Animais , Fármacos Antiobesidade/efeitos adversos , Fármacos Antiobesidade/uso terapêutico , Núcleo Arqueado do Hipotálamo/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Restrição Calórica/efeitos adversos , Exenatida/efeitos adversos , Exenatida/uso terapêutico , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Gliose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Obesidade/dietoterapia
6.
Int J Obes (Lond) ; 43(6): 1305-1318, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30283080

RESUMO

BACKGROUND/OBJECTIVES: Individuals carrying loss-of-function gene mutations for the adipocyte hormone leptin are morbidly obese, but respond favorably to replacement therapy. Recombinant leptin is however largely ineffective for the vast majority of obese individuals due to leptin resistance. One theory underlying leptin resistance is impaired leptin transport across the blood-brain-barrier (BBB). Here, we aim to gain new insights into the mechanisms of leptin BBB transport, and its role in leptin resistance. METHODS: We developed a novel tool for visualizing leptin transport using infrared fluorescently labeled leptin, combined with tissue clearing and light-sheet fluorescence microscopy. We corroborated these data using western blotting. RESULTS: Using 3D whole brain imaging, we display comparable leptin accumulation in circumventricular organs of lean and obese mice, predominantly in the choroid plexus (CP). Protein quantification revealed comparable leptin levels in microdissected mediobasal hypothalami (MBH) of lean and obese mice (p = 0.99). We further found increased leptin receptor expression in the CP (p = 0.025, p = 0.0002) and a trend toward elevated leptin protein levels in the MBH (p = 0.17, p = 0.078) of obese mice undergoing weight loss interventions by calorie restriction or exendin-4 treatment. CONCLUSIONS: Overall, our findings suggest a crucial role for the CP in controlling the transport of leptin into the cerebrospinal fluid and from there to target areas such as the MBH, potentially mediated via the leptin receptor. Similar leptin levels in circumventricular organs and the MBH of lean and obese mice further suggest intact leptin BBB transport in leptin resistant mice.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Leptina/metabolismo , Camundongos Obesos/metabolismo , Obesidade Mórbida/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/diagnóstico por imagem , Western Blotting , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Fluorescência , Células HEK293 , Humanos , Imageamento Tridimensional , Camundongos , Imagem Molecular
7.
J Med Chem ; 61(24): 11144-11157, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30525586

RESUMO

Celastrol is a natural pentacyclic triterpene used in traditional Chinese medicine with significant weight-lowering effects. Celastrol-administered mice at 100 µg/kg decrease food consumption and body weight via a leptin-dependent mechanism, yet its molecular targets in this pathway remain elusive. Here, we demonstrate in vivo that celastrol-induced weight loss is largely mediated by the inhibition of leptin negative regulators protein tyrosine phosphatase (PTP) 1B (PTP1B) and T-cell PTP (TCPTP) in the arcuate nucleus (ARC) of the hypothalamus. We show in vitro that celastrol binds reversibly and inhibits noncompetitively PTP1B and TCPTP. NMR data map the binding site to an allosteric site in the catalytic domain that is in proximity of the active site. By using a panel of PTPs implicated in hypothalamic leptin signaling, we show that celastrol additionally inhibited PTEN and SHP2 but had no activity toward other phosphatases of the PTP family. These results suggest that PTP1B and TCPTP in the ARC are essential for celastrol's weight lowering effects in adult obese mice.


Assuntos
Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Triterpenos/farmacologia , Sítio Alostérico , Animais , Fármacos Antiobesidade/metabolismo , Domínio Catalítico , Dieta Hiperlipídica/efeitos adversos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Camundongos Transgênicos , Obesidade/etiologia , Triterpenos Pentacíclicos , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/química , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/metabolismo , Redução de Peso/efeitos dos fármacos
8.
Diabetes ; 67(11): 2456-2465, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30158241

RESUMO

Celastrol, a plant-derived constituent of traditional Chinese medicine, has been proposed to offer significant potential as an antiobesity drug. However, the molecular mechanism for this activity is unknown. We show that the weight-lowering effects of celastrol are driven by decreased food consumption. Although young Lep ob mice respond with a decrease in food intake and body weight, adult Lep db and Lep ob mice are unresponsive to celastrol, suggesting that functional leptin signaling in adult mice is required to elicit celastrol's catabolic actions. Protein tyrosine phosphatase 1 (PTP1B), a leptin negative-feedback regulator, has been previously reported to be one of celastrol's targets. However, we found that global PTP1B knockout (KO) and wild-type (WT) mice have comparable weight loss and hypophagia when treated with celastrol. Increased levels of uncoupling protein 1 (UCP1) in subcutaneous white and brown adipose tissue suggest celastrol-induced thermogenesis as a further mechanism. However, diet-induced obese UCP1 WT and KO mice have comparable weight loss upon celastrol treatment, and celastrol treatment has no effect on energy expenditure under ambient housing or thermoneutral conditions. Overall, our results suggest that celastrol-induced weight loss is hypophagia driven and age-dependently mediated by functional leptin signaling. Our data encourage reconsideration of therapeutic antiobesity strategies built on leptin sensitization.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Proteína Desacopladora 1/metabolismo , Redução de Peso/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Camundongos Knockout , Obesidade/genética , Triterpenos Pentacíclicos , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Desacopladora 1/genética
9.
J Neuroinflammation ; 15(1): 35, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422055

RESUMO

ᅟ: Astrocytosis is a reactive process involving cellular, molecular, and functional changes to facilitate neuronal survival, myelin preservation, blood brain barrier function and protective glial scar formation upon brain insult. The overall pro- or anti-inflammatory impact of reactive astrocytes appears to be driven in a context- and disease-driven manner by modulation of astrocytic Ca2+ homeostasis and activation of Ca2+/calmodulin-activated serine/threonine phosphatase calcineurin. Here, we aimed to assess whether calcineurin is dispensable for astrocytosis in the hypothalamus driven by prolonged high fat diet (HFD) feeding. Global deletion of calcineurin A beta (gene name: Ppp3cb) led to a decrease of glial fibrillary acidic protein (GFAP)-positive cells in the ventromedial hypothalamus (VMH), dorsomedial hypothalamus (DMH), and arcuate nucleus (ARC) of mice exposed chronically to HFD. The concomitant decrease in Iba1-positive microglia in the VMH further suggests a modest impact of Ppp3cb deletion on microgliosis. Pharmacological inhibition of calcineurin activity by Fk506 had no impact on IBA1-positive microglia in hypothalami of mice acutely exposed to HFD for 1 week. However, Fk506-treated mice displayed a decrease in GFAP levels in the ARC. In vivo effects could not be replicated in cell culture, where calcineurin inhibition by Fk506 had no effect on astrocytic morphology, astrocytic cell death, GFAP, and vimentin protein levels or microglia numbers in primary hypothalamic astrocytes and microglia co-cultures. Further, adenoviral overexpression of calcineurin subunit Ppp3r1 in primary glia culture did not lead to an increase in GFAP fluorescence intensity. Overall, our results point to a prominent role of calcineurin in mediating hypothalamic astrocytosis as response to acute and chronic HFD exposure. Moreover, discrepant findings in vivo and in cell culture indicate the necessity of studying astrocytes in their "natural" environment, i.e., preserving an intact hypothalamic microenvironment with neurons and non-neuronal cells in close proximity.


Assuntos
Calcineurina/deficiência , Dieta Hiperlipídica/efeitos adversos , Gliose/metabolismo , Gliose/prevenção & controle , Hipotálamo/metabolismo , Animais , Astrócitos/metabolismo , Sobrevivência Celular/fisiologia , Células Cultivadas , Gliose/patologia , Hipotálamo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
PLoS One ; 12(9): e0183488, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28873424

RESUMO

Here, we aimed to investigate the potential role of DUSP6, a dual specificity phosphatase, that specifically inactivates extracellular signal-regulated kinase (ERK), for the regulation of body weight and glucose homeostasis. We further assessed whether metabolic challenges affect Dusp6 expression in selected brain areas or white adipose tissue. Hypothalamic Dusp6 mRNA levels remained unchanged in chow-fed lean vs. high fat diet (HFD) fed obese C57Bl/6J mice, and in C57Bl/6J mice undergoing prolonged fasting or refeeding with fat free diet (FFD) or HFD. Similarly, Dusp6 expression levels were unchanged in selected brain regions of Lepob mice treated with 1 mg/kg of leptin for 6 days, compared to pair-fed or saline-treated Lepob controls. Dusp6 expression levels remained unaltered in vitro in primary adipocytes undergoing differentiation, but were increased in eWAT of HFD-fed obese C57Bl/6J mice, compared to chow-fed lean controls. Global chow-fed DUSP6 KO mice displayed reduced body weight and lean mass and slightly increased fat mass at a young age, which is indicative for early-age weight retardation. Subsequent exposure to HFD led to a significant increase in lean mass and body weight in DUSP6 deficient mice, compared to WT controls. Nevertheless, after 26 weeks of high-fat diet exposure, we observed comparable body weight, fat and lean mass in DUSP6 WT and KO mice, suggesting overall normal susceptibility to develop obesity. In line with the increased weight gain to compensate for early-age weight retardation, HFD-fed DUSP6 KO displayed increased expression levels of anabolic genes involved in lipid and cholesterol metabolism in the epididymal white adipose tissue (eWAT), compared to WT controls. Glucose tolerance was perturbed in both chow-fed lean or HFD-fed obese DUSP6 KO, compared to their respective WT controls. Overall, our data indicate that DUSP6 deficiency has limited impact on the regulation of energy metabolism, but impairs systemic glucose tolerance. Our data are in conflict to earlier reports that propose protection from diet-induced obesity and glucose intolerance in DUSP6 deficient mice. Reasons for the discrepancies remain elusive, but may entail differential genetic backgrounds, environmental factors such as the type and source of HFD, or alterations in the gut microbiome between facilities.


Assuntos
Peso Corporal , Fosfatase 6 de Especificidade Dupla/deficiência , Intolerância à Glucose/enzimologia , Tecido Adiposo Branco/metabolismo , Animais , Composição Corporal , Dieta Hiperlipídica , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/metabolismo , Epididimo/metabolismo , Jejum , Perfilação da Expressão Gênica , Intolerância à Glucose/complicações , Intolerância à Glucose/genética , Intolerância à Glucose/patologia , Homeostase , Leptina/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenômenos Fisiológicos da Nutrição , Obesidade/complicações , Obesidade/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Neuroscience ; 357: 241-254, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28627418

RESUMO

Elevated levels of oxidative stress and neuronal inflammation in the hypothalamus or ventral midbrain, respectively, represent common denominators for obesity and Parkinson's Disease (PD). However, little is known about defense mechanisms that protect neurons in these regions from oxidative damage. Here, we aimed to assess whether murine Gpx4, a crucial antioxidant enzyme that protects neurons from membrane damage and ferroptosis, is critical for the protection from neuronal inflammation in two distinct pathophysiologic diseases, namely metabolic dysfunction in diet-induced obesity or PD. Gpx4 was deleted from either AgRP or POMC neurons in the hypothalamus, essential for metabolic homeostasis, or from dopaminergic neurons in the ventral midbrain, governing behaviors such as anxiety or voluntary movement. To induce a pro-inflammatory environment, AgRP and POMC neuron-specific Gpx4 knockout mice were subjected to high-fat high-sucrose (HFHS) diet. To exacerbate oxidative stress in dopaminergic neurons of the ventral midbrain, we systemically co-deleted the PD-related gene DJ-1. Gpx4 was dispensable for the maintenance of cellular health and function of POMC neurons, even in mice exposed to obesogenic conditions. In contrast, HFHS-fed mice with Gpx4 deletion from AgRP neurons displayed increased body adiposity. Gpx4 expression and activity were diminished in the hypothalamus of HFHS-fed mice compared to standard diet-fed controls. Gpx4 deletion from dopaminergic neurons induced anxiety behavior, and diminished spontaneous locomotor activity when DJ-1 was co-deleted. Overall, these data suggest a physiological role for Gpx4 in balancing metabolic control signals and inflammation in AgRP but not POMC neurons. Moreover, Gpx4 appears to constitute an important rheostat against neuronal dysfunction and PD-like symptoms in dopaminergic circuitry within the ventral midbrain.


Assuntos
Ansiedade/enzimologia , Peso Corporal/fisiologia , Glutationa Peroxidase/deficiência , Atividade Motora/fisiologia , Obesidade/enzimologia , Transtornos Parkinsonianos/enzimologia , Adiposidade/fisiologia , Animais , Ansiedade/imunologia , Ansiedade/patologia , Comportamento Animal/fisiologia , Dieta Hiperlipídica , Sacarose Alimentar , Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/patologia , Feminino , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Hipotálamo/enzimologia , Hipotálamo/imunologia , Hipotálamo/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/patologia , Estresse Oxidativo/fisiologia , Transtornos Parkinsonianos/imunologia , Transtornos Parkinsonianos/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Caracteres Sexuais , Glutationa Peroxidase GPX1
13.
Diabetes ; 66(5): 1247-1257, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28174288

RESUMO

In pancreatic ß-cells, mitochondrial bioenergetics control glucose-stimulated insulin secretion. Mitochondrial dynamics are generally associated with quality control, maintaining the functionality of bioenergetics. By acute pharmacological inhibition of mitochondrial fission protein Drp1, we demonstrate in this study that mitochondrial fission is necessary for glucose-stimulated insulin secretion in mouse and human islets. We confirm that genetic silencing of Drp1 increases mitochondrial proton leak in MIN6 cells. However, our comprehensive analysis of pancreatic islet bioenergetics reveals that Drp1 does not control insulin secretion via its effect on proton leak but instead via modulation of glucose-fueled respiration. Notably, pyruvate fully rescues the impaired insulin secretion of fission-deficient ß-cells, demonstrating that defective mitochondrial dynamics solely affect substrate supply upstream of oxidative phosphorylation. The present findings provide novel insights into how mitochondrial dysfunction may cause pancreatic ß-cell failure. In addition, the results will stimulate new thinking in the intersecting fields of mitochondrial dynamics and bioenergetics, as treatment of defective dynamics in mitochondrial diseases appears to be possible by improving metabolism upstream of mitochondria.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Trifosfato de Adenosina/metabolismo , Animais , Dinaminas/antagonistas & inibidores , Metabolismo Energético/genética , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/genética , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Ácido Pirúvico/farmacologia
14.
Nat Commun ; 7: 10782, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26923837

RESUMO

Hypothalamic leptin signalling has a key role in food intake and energy-balance control and is often impaired in obese individuals. Here we identify histone deacetylase 5 (HDAC5) as a regulator of leptin signalling and organismal energy balance. Global HDAC5 KO mice have increased food intake and greater diet-induced obesity when fed high-fat diet. Pharmacological and genetic inhibition of HDAC5 activity in the mediobasal hypothalamus increases food intake and modulates pathways implicated in leptin signalling. We show HDAC5 directly regulates STAT3 localization and transcriptional activity via reciprocal STAT3 deacetylation at Lys685 and phosphorylation at Tyr705. In vivo, leptin sensitivity is substantially impaired in HDAC5 loss-of-function mice. Hypothalamic HDAC5 overexpression improves leptin action and partially protects against HFD-induced leptin resistance and obesity. Overall, our data suggest that hypothalamic HDAC5 activity is a regulator of leptin signalling that adapts food intake and body weight to our dietary environment.


Assuntos
Hipotálamo/metabolismo , Leptina/metabolismo , Animais , Glicemia , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Teste de Tolerância a Glucose , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Infusões Intraventriculares , Resistência à Insulina , Microdissecção e Captura a Laser , Leptina/genética , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Neurônios/fisiologia , Ratos , Ratos Wistar
15.
Cell Metab ; 22(5): 838-50, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26411342

RESUMO

Canonical protein phosphatase 3/calcineurin signaling is central to numerous physiological processes. Here we provide evidence that calcineurin plays a pivotal role in controlling systemic energy and body weight homeostasis. Knockdown of calcineurin in Drosophila melanogaster led to a decrease in body weight and energy stores, and increased energy expenditure. In mice, global deficiency of catalytic subunit Ppp3cb, and tissue-specific ablation of regulatory subunit Ppp3r1 from skeletal muscle, but not adipose tissue or liver, led to protection from high-fat-diet-induced obesity and comorbid sequelæ. Ser637 hyperphosphorylation of dynamin-related protein 1 (Drp1) in skeletal muscle of calcineurin-deficient mice was associated with mitochondrial elongation into power-cable-shaped filaments and increased mitochondrial respiration, but also with attenuated exercise performance. Our data suggest that calcineurin acts as highly conserved pivot for the adaptive metabolic responses to environmental changes such as high-fat, high-sugar diets or exercise.


Assuntos
Calcineurina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Animais , Peso Corporal , Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio , Dieta Hiperlipídica , Dinaminas/metabolismo , Metabolismo Energético/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Obesidade/genética , Obesidade/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...