Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(9): e0257024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34492093

RESUMO

BACKGROUND: Pediculus humanus capitis or head louse is an obligate ectoparasite and its infestation remains a major public health issue worldwide. Molecular analysis divides head lice into six clades and intra-clade genetic differences have been identified. Several hypotheses have been formulated to elucidate the discrepancies of the variety of head lice among different regions of the world. It is currently concluded that head lice distribution might be associated with human migration history. This study aims to investigate genetic data of human head lice in Thailand. We believe that the analysis could help establish the correlation between local and global head lice populations. METHOD: We investigated mitochondrial cytochrome b (cytb) gene of the collected 214 head lice to evaluate genetic diversity from 15 provinces among 6 regions of Thailand. The head lice genes were added to the global pool for the phylogenetic tree, Bayesian tree, Skyline plot, and median joining network construction. The biodiversity, neutrality tests, and population genetic differentiation among the 6 Thailand geographic regions were analyzed by DNAsp version 6. RESULTS: The phylogenetic tree analysis of 214 collected head lice are of clade A and clade C accounting for roughly 65% and 35% respectively. The Bayesian tree revealed a correlation of clade diversification and ancient human dispersal timeline. In Thailand, clade A is widespread in the country. Clade C is confined to only the Central, Southern, and Northeastern regions. We identified 50 novel haplotypes. Statistical analysis showed congruent results between genetic differentiation and population migration especially with South Asia. CONCLUSIONS: Pediculosis remains problematic among children in the rural areas in Thailand. Cytb gene analysis of human head lice illustrated clade distribution and intra-clade diversity of different areas. Our study reported novel haplotypes of head lice in Thailand. Moreover, the statistic calculation provided a better understanding of their relationship with human, as an obligate human parasite and might help provide a better insight into the history of human population migration. Determination of the correlation between phylogenetic data and pediculicide resistance gene as well as residing bacteria are of interest for future studies.


Assuntos
Citocromos b/genética , Ectoparasitoses/genética , Infestações por Piolhos/genética , Pediculus/genética , Animais , Criança , Ectoparasitoses/epidemiologia , Ectoparasitoses/parasitologia , Feminino , Variação Genética/genética , Haplótipos/genética , Migração Humana , Humanos , Infestações por Piolhos/epidemiologia , Infestações por Piolhos/parasitologia , Masculino , Mitocôndrias/genética , Pediculus/classificação , Pediculus/patogenicidade , Filogenia , Tailândia/epidemiologia
2.
PLoS Negl Trop Dis ; 14(12): e0008955, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33326440

RESUMO

Human head lice are blood-sucking insects causing an infestation in humans called pediculosis capitis. The infestation is more prevalent in the school-aged population. Scalp itching, a common presenting symptom, results in scratching and sleep disturbance. The condition can lead to social stigmatization which can lead to loss of self-esteem. Currently, the mainstay of treatment for pediculosis is chemical insecticides such as permethrin. The extended use of permethrin worldwide leads to growing pediculicide resistance. The aim of this study is to demonstrate the presence of the knockdown resistance (kdr) mutation in head lice populations from six different localities of Thailand. A total of 260 head lice samples in this study were collected from 15 provinces in the 6 regions of Thailand. Polymerase chain reaction (PCR) was used to amplify the α subunit of voltage-sensitive sodium channel (VSSC) gene, kdr mutation (C→T substitution). Restriction fragment length polymorphism (RFLP) patterns and sequencing were used to identify the kdr T917I mutation and demonstrated three genotypic forms including homozygous susceptible (SS), heterozygous genotype (RS), and homozygous resistant (RR). Of 260 samples from this study, 156 (60.00%) were SS, 58 (22.31%) were RS, and 46 (17.69%) were RR. The overall frequency of the kdr T917I mutation was 0.31. Genotypes frequencies determination using the exact test of Hardy-Weinberg equilibrium found that northern, central, northeastern, southern, and western region of Thailand differed from expectation. The five aforementioned localities had positive inbreeding coefficient value (Fis > 0) which indicated an excess of homozygotes. The nucleotide and amino acid sequences of RS and RR showed T917I and L920F point mutations. In conclusion, this is the first study detecting permethrin resistance among human head lice from Thailand. PCR-RFLP is an easy technique to demonstrate the kdr mutation in head louse. The data obtained from this study would increase awareness of increasing of the kdr mutation in head louse in Thailand.


Assuntos
Resistência a Inseticidas/genética , Inseticidas/farmacologia , Infestações por Piolhos/parasitologia , Pediculus/genética , Permetrina/farmacologia , Substituição de Aminoácidos , Animais , Criança , Feminino , Genótipo , Humanos , Infestações por Piolhos/epidemiologia , Masculino , Mutação de Sentido Incorreto , Pediculus/efeitos dos fármacos , Mutação Puntual , Prevalência , Instituições Acadêmicas , Estudantes , Tailândia/epidemiologia
3.
Pathogens ; 8(3)2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527459

RESUMO

Soil-transmitted helminths (STHs) are the most common intestinal parasites infecting humans worldwide. STH infections are a major cause of morbidity and disability. Accurate diagnostic tools are pivotal for assessing the exact prevalence of parasitic infections. Microscopic examination and culture techniques have been used to observe the presence of eggs or larvae of parasites in stool samples, but they are time-consuming and have low sensitivity. Therefore, accurate, simple, and inexpensive diagnostic techniques are still required for simultaneous detection of STH infections. Although molecular-based techniques, such as real-time PCR and multiplex real-time PCR, have been developed, they are not suitable for routine diagnosis due to the requirement for expensive reagents and instruments. In this study, we established a conventional multiplex PCR for simultaneous rapid detection of Ascaris lumbricoides, Necator americanus, and Strongyloides stercoralis in stool samples. Our results show that the multiplex PCR could detect the DNA of STHs at a very low target gene concentrations (lower than 1 pg) with no cross-amplification. Multiplex PCR had five times higher sensitivity than the formalin-ethyl acetate concentration technique (FECT) in the detection of multiple infections, and two times higher for detection of S. stercoralis. However, multiplex PCR was comparable to FECT in the detection of A. lumbricoides and N. americanus. In conclusion, this method could be used as an alternative method for the detection of STHs, especially for S. stercoralis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...