Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mutat ; 42(8): 1030-1041, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34082468

RESUMO

PCDH19 is a nonclustered protocadherin molecule involved in axon bundling, synapse function, and transcriptional coregulation. Pathogenic variants in PCDH19 cause infantile-onset epilepsy known as PCDH19-clustering epilepsy or PCDH19-CE. Recent advances in DNA-sequencing technologies have led to a significant increase in the number of reported PCDH19-CE variants, many of uncertain significance. We aimed to determine the best approaches for assessing the disease relevance of missense variants in PCDH19. The application of the American College of Medical Genetics and Association for Molecular Pathology (ACMG-AMP) guidelines was only 50% accurate. Using a training set of 322 known benign or pathogenic missense variants, we identified MutPred2, MutationAssessor, and GPP as the best performing in silico tools. We generated a protein structural model of the extracellular domain and assessed 24 missense variants. We also assessed 24 variants using an in vitro reporter assay. A combination of these tools was 93% accurate in assessing known pathogenic and benign PCDH19 variants. We increased the accuracy of the ACMG-AMP classification of 45 PCDH19 variants from 50% to 94%, using these tools. In summary, we have developed a robust toolbox for the assessment of PCDH19 variant pathogenicity to improve the accuracy of PCDH19-CE variant classification.


Assuntos
Caderinas , Epilepsia , Caderinas/genética , Humanos , Mutação de Sentido Incorreto , Protocaderinas , Análise de Sequência de DNA
2.
Mol Psychiatry ; 24(2): 241-251, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29892053

RESUMO

Epilepsy and Mental Retardation Limited to Females (EFMR) is an infantile onset disorder characterized by clusters of seizures. EFMR is due to mutations in the X-chromosome gene PCDH19, and is underpinned by cellular mosaicism due to X-chromosome inactivation in females or somatic mutation in males. This review characterizes the neuropsychiatric profile of this disorder and examines the association of clinical and molecular factors with neuropsychiatric outcomes. Data were extracted from 38 peer-reviewed original articles including 271 individual cases. We found that seizure onset ≤12 months was significantly associated (p = 4.127 × 10-7) with more severe intellectual disability, compared with onset >12 months. We identified two recurrent variants p.Asn340Ser and p.Tyr366Leufs*10 occurring in 25 (20 unrelated) and 30 (11 unrelated) cases, respectively. PCDH19 mutations were associated with psychiatric comorbidities in approximately 60% of females, 80% of affected mosaic males, and reported in nine hemizygous males. Hyperactive, autistic, and obsessive-compulsive features were most frequently reported. There were no genotype-phenotype associations in the individuals with recurrent variants or the group overall. Age at seizure onset can be used to provide more informative prognostic counseling.


Assuntos
Caderinas/genética , Epilepsia/genética , Espasmos Infantis/genética , Caderinas/metabolismo , Comorbidade , Feminino , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Mutação , Protocaderinas , Convulsões/genética
3.
Hum Mol Genet ; 26(11): 2042-2052, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334947

RESUMO

De novo and inherited mutations of X-chromosome cell adhesion molecule protocadherin 19 (PCDH19) cause frequent, highly variable epilepsy, autism, cognitive decline and behavioural problems syndrome. Intriguingly, hemizygous null males are not affected while heterozygous females are, contradicting established X-chromosome inheritance. The disease mechanism is not known. Cellular mosaicism is the likely driver. We have identified p54nrb/NONO, a multifunctional nuclear paraspeckle protein with known roles in nuclear hormone receptor gene regulation, as a PCDH19 protein interacting partner. Using breast cancer cells we show that PCDH19-NONO complex is a positive co-regulator of ERα-mediated gene expression. Expression of mutant PCDH19 affects at least a subset of known ERα-regulated genes. These data are consistent with our findings that genes regulated by nuclear hormone receptors and those involved in the metabolism of neurosteroids in particular are dysregulated in PCDH19-epilepsy girls and affected mosaic males. Overall we define and characterize a novel mechanism of gene regulation driven by PCDH19, which is mediated by paraspeckle constituent NONO and is ERα-dependent. This PCDH19-NONO-ERα axis is of relevance not only to PCDH19-epilepsy and its comorbidities but likely also to ERα and generally nuclear hormone receptor-associated cancers.


Assuntos
Caderinas/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Fatores de Transcrição de Octâmero/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias da Mama/metabolismo , Caderinas/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Epilepsia/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Deficiência Intelectual/genética , Mutação , Proteínas Associadas à Matriz Nuclear/genética , Fatores de Transcrição de Octâmero/genética , Linhagem , Protocaderinas , Proteínas de Ligação a RNA/genética
4.
Oncotarget ; 7(40): 64886-64899, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27588496

RESUMO

While both human sphingosine kinases (SK1 and SK2) catalyze the generation of the pleiotropic signaling lipid sphingosine 1-phosphate, these enzymes appear to be functionally distinct. SK1 has well described roles in promoting cell survival, proliferation and neoplastic transformation. The roles of SK2, and its contribution to cancer, however, are much less clear. Some studies have suggested an anti-proliferative/pro-apoptotic function for SK2, while others indicate it has a pro-survival role and its inhibition can have anti-cancer effects. Our analysis of gene expression data revealed that SK2 is upregulated in many human cancers, but only to a small extent (up to 2.5-fold over normal tissue). Based on these findings, we examined the effect of different levels of cellular SK2 and showed that high-level overexpression reduced cell proliferation and survival, and increased cellular ceramide levels. In contrast, however, low-level SK2 overexpression promoted cell survival and proliferation, and induced neoplastic transformation in vivo. These findings coincided with decreased nuclear localization and increased plasma membrane localization of SK2, as well as increases in extracellular S1P formation. Hence, we have shown for the first time that SK2 can have a direct role in promoting oncogenesis, supporting the use of SK2-specific inhibitors as anti-cancer agents.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Apoptose , Carcinogênese , Proliferação de Células , Sobrevivência Celular , Ceramidas/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Lisofosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transporte Proteico , Esfingosina/análogos & derivados , Esfingosina/metabolismo
5.
Hum Mol Genet ; 24(18): 5250-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26123493

RESUMO

Protocadherin 19 (PCDH19) female limited epilepsy (PCDH19-FE; also known as epilepsy and mental retardation limited to females, EFMR; MIM300088) is an infantile onset epilepsy syndrome with or without intellectual disability (ID) and autism. We investigated transcriptomes of PCDH19-FE female and control primary skin fibroblasts, which are endowed to metabolize neurosteroid hormones. We identified a set of 94 significantly dysregulated genes in PCDH19-FE females. Intriguingly, 43 of the 94 genes (45.7%) showed gender-biased expression; enrichment of such genes was highly significant (P = 2.51E-47, two-tailed Fisher exact test). We further investigated the AKR1C1-3 genes, which encode crucial steroid hormone-metabolizing enzymes whose key products include allopregnanolone and estradiol. Both mRNA and protein levels of AKR1C3 were significantly decreased in PCDH19-FE patients. In agreement with this, the blood levels of allopregnanolone were also (P < 0.01) reduced. In conclusion, we show that the deficiency of neurosteroid allopregnanolone, one of the most potent GABA receptor modulators, may contribute to PCDH19-FE. Overall our findings provide evidence for a role of neurosteroids in epilepsy, ID and autism and create realistic opportunities for targeted therapeutic interventions.


Assuntos
Caderinas/genética , Epilepsia/sangue , Epilepsia/genética , Mutação , Pregnanolona/deficiência , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Adolescente , Adulto , Idade de Início , Membro C3 da Família 1 de alfa-Ceto Redutase , Criança , Pré-Escolar , Análise por Conglomerados , Epilepsia/diagnóstico , Feminino , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Hidroxiprostaglandina Desidrogenases/genética , Hidroxiprostaglandina Desidrogenases/metabolismo , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Pessoa de Meia-Idade , Fenótipo , Pregnanolona/sangue , Protocaderinas , Reprodutibilidade dos Testes , Transdução de Sinais , Adulto Jovem
6.
Oncotarget ; 6(9): 7065-83, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25788259

RESUMO

The dynamic balance of cellular sphingolipids, the sphingolipid rheostat, is an important determinant of cell fate, and is commonly deregulated in cancer. Sphingosine 1-phosphate is a signaling molecule with anti-apoptotic, pro-proliferative and pro-angiogenic effects, while conversely, ceramide and sphingosine are pro-apoptotic. The sphingosine kinases (SKs) are key regulators of this sphingolipid rheostat, and are attractive targets for anti-cancer therapy. Here we report a first-in-class ATP-binding site-directed small molecule SK inhibitor, MP-A08, discovered using an approach of structural homology modelling of the ATP-binding site of SK1 and in silico docking with small molecule libraries. MP-A08 is a highly selective ATP competitive SK inhibitor that targets both SK1 and SK2. MP-A08 blocks pro-proliferative signalling pathways, induces mitochondrial-associated apoptosis in a SK-dependent manner, and reduces the growth of human lung adenocarcinoma tumours in a mouse xenograft model by both inducing tumour cell apoptosis and inhibiting tumour angiogenesis. Thus, this selective ATP competitive SK inhibitor provides a promising candidate for potential development as an anti-cancer therapy, and also, due to its different mode of inhibition to other known SK inhibitors, both validates the SKs as targets for anti-cancer therapy, and represents an important experimental tool to study these enzymes.


Assuntos
Adenocarcinoma/tratamento farmacológico , Trifosfato de Adenosina/química , Antineoplásicos/química , Inibidores Enzimáticos/química , Neoplasias Pulmonares/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Adenocarcinoma/metabolismo , Animais , Apoptose , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Células MCF-7 , Masculino , Camundongos , Camundongos Transgênicos , Conformação Molecular , Mutagênese , Mutação , Transplante de Neoplasias , Neovascularização Patológica , Ligação Proteica , Esfingolipídeos/química
7.
Methods Mol Biol ; 874: 21-31, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22528436

RESUMO

Sphingosine kinases (SK) 1 and 2 are unique lipid kinases that phosphorylate sphingosine to form -sphingosine-1-phosphate (S1P). S1P is a bioactive molecule eliciting multiple effects both extracellularly via cell surface S1P receptors and intracellularly through a number of recently identified protein targets. The two enzymes arise from different genes, and differ in their cellular localisation, developmental expression, catalytic properties, and in at least some functional roles. Here, we describe methods for selectively detecting SK1 and SK2 activities in vitro, highlighting conditions that can discriminate between the activities of these two enzymes. The assays measure the production of (32)P-labelled S1P following the addition of exogenous sphingosine and [γ(32)P] adenosine-5'-triphosphate. The S1P product can be purified by Bligh-Dyer solvent extraction, separated by thin-layer chromatography (TLC), and the radiolabelled S1P quantified by exposing the TLC plate to a storage phosphor screen. This sensitive, reproducible assay can be used to selectively detect SK1 and SK2 activities in tissue, cell, and recombinant protein samples.


Assuntos
Ensaios Enzimáticos/métodos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Biocatálise , Fracionamento Químico , Cromatografia em Camada Fina , Isoenzimas/metabolismo , Lisofosfolipídeos/biossíntese , Lisofosfolipídeos/química , Lisofosfolipídeos/isolamento & purificação , Fosforilação , Esfingosina/análogos & derivados , Esfingosina/biossíntese , Esfingosina/química , Esfingosina/isolamento & purificação , Esfingosina/metabolismo
8.
Biotechniques ; 45(2): 155-6, 158, 160 passim, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18687064

RESUMO

Tetracycline-regulated expression systems have been widely used for inducible protein expression in cultured mammalian cells. With these systems, however, leakiness in expression of the target gene in the absence of the inducing agent is a frequent problem. Here we describe a novel approach to overcome this problem that involves the incorporation of AU-rich mRNA destabilizing elements (AREs) into the 3' untranslated regions of the tetracycline-inducible constructs. Using the inducible expression of sphingosine kinase 1 and 2 in HEK293 cells as model systems, we found this ARE approach to be remarkably successful in ablating expression of these proteins in the absence of doxycycline through decreasing stability of their mRNAs. We show that this undemanding and flexible process results in a substantial decrease in the leakiness of the tetracycline-inducible expression system while maintaining a high level of target protein expression following induction.


Assuntos
Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas/fisiologia , Sequência de Bases , Células Cultivadas , Humanos , Dados de Sequência Molecular , Estabilidade de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA