Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540744

RESUMO

Laccases from white-rot fungi catalyze lignin depolymerization, a critical first step to upgrading lignin to valuable biodiesel fuels and chemicals. In this study, a wildtype laccase from the basidiomycete Fomitiporia mediterranea (Fom_lac) and a variant engineered to have a carbohydrate-binding module (Fom_CBM) were studied for their ability to catalyze cleavage of ß-O-4' ether and C-C bonds in phenolic and non-phenolic lignin dimers using a nanostructure-initiator mass spectrometry-based assay. Fom_lac and Fom_CBM catalyze ß-O-4' ether and C-C bond breaking, with higher activity under acidic conditions (pH < 6). The potential of Fom_lac and Fom_CBM to enhance saccharification yields from untreated and ionic liquid pretreated pine was also investigated. Adding Fom_CBM to mixtures of cellulases and hemicellulases improved sugar yields by 140% on untreated pine and 32% on cholinium lysinate pretreated pine when compared to the inclusion of Fom_lac to the same mixtures. Adding either Fom_lac or Fom_CBM to mixtures of cellulases and hemicellulases effectively accelerates enzymatic hydrolysis, demonstrating its potential applications for lignocellulose valorization. We postulate that additional increases in sugar yields for the Fom_CBM enzyme mixtures were due to Fom_CBM being brought more proximal to lignin through binding to either cellulose or lignin itself.


Assuntos
Basidiomycota , Celulases , Lignina/química , Lacase/metabolismo , Basidiomycota/metabolismo , Carboidratos , Açúcares , Éteres
2.
Biomacromolecules ; 24(6): 2633-2642, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37075205

RESUMO

Recently, the desire for a safe and effective method for skin whitening has been growing in the cosmetics industry. Commonly used tyrosinase-inhibiting chemical reagents exhibit side effects. Thus, recent studies have focused on performing melanin decolorization with enzymes as an alternative due to the low toxicity of enzymes and their ability to decolorize melanin selectively. Herein, 10 different isozymes were expressed as recombinant lignin peroxidases (LiPs) from Phanerochaete chrysosporium (PcLiPs), and PcLiP isozyme 4 (PcLiP04) was selected due to its high stability and activity at pH 5.5 and 37 °C, which is close to human skin conditions. In vitro melanin decolorization results indicated that PcLiP04 exhibited at least 2.9-fold higher efficiency than that of well-known lignin peroxidase (PcLiP01) in a typical human skin-mimicking environment. The interaction force between melanin films measured by a surface forces apparatus (SFA) revealed that the decolorization of melanin by PcLiP04 harbors a disrupted structure, possibly interrupting π-π stacking and/or hydrogen bonds. In addition, a 3D reconstructed human pigmented epidermis skin model showed a decrease in melanin area to 59.8% using PcLiP04, which suggests that PcLiP04 exhibits a strong potential for skin whitening.


Assuntos
Melaninas , Phanerochaete , Humanos , Peroxidases , Pele , Epiderme , Lignina
3.
Biotechnol Adv ; 54: 107809, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34333091

RESUMO

Development and deployment of commercial biorefineries based on conversion of lignocellulosic biomass into biofuels and bioproducts faces many challenges that must be addressed before they are commercially viable. One of the biggest challenges faced is the efficient and scalable valorization of lignin, one of the three major components of the plant cell wall. Lignin is the most abundant aromatic biopolymer on earth, and its presence hinders the extraction of cellulose and hemicellulose that is essential to biochemical conversion of lignocellulose to fuels and chemicals. There has been a significant amount of work over the past 20 years that has sought to develop innovative processes designed to extract and recycle lignin into valuable compounds and help reduce the overall costs of the biorefinery process. Due to the complex matrix of lignin, which is essential for plant survival, the development of a reliable and efficient lignin conversion technology has been difficult to achieve. One approach that has received significant interest relies on the use of enzymes, notably laccases, a class of multi­copper green oxidative enzymes that catalyze bond breaking in lignin to produce smaller oligomers. In this review, we first assess the different innovations of lignin valorization using laccases within the context of a biorefinery process, and then assess the latest economical advances that these innovations offered. Finally, we review laccase characterization and optimization, as well as the prospects and bottlenecks of this class of enzymes within the industrial and biorefining sectors.


Assuntos
Biocombustíveis , Lignina , Biomassa , Lacase , Lignina/química
4.
Enzyme Microb Technol ; 148: 109803, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34116764

RESUMO

The development of a lignin peroxidase (LiP) that is thermostable even under acidic pH conditions is a main issue for efficient enzymatic lignin degradation due to reduced repolymerization of free phenolic products at acidic pH (< 3). Native LiP under mild conditions (half-life (t1/2) of 8.2 days at pH 6) exhibits a marked decline in thermostability under acidic conditions (t1/2 of only 14 min at pH 2.5). Thus, improving the thermostability of LiP in acidic environments is required for effective lignin depolymerization in practical applications. Here, we show the improved thermostability of a synthetic LiPH8 variant (S49C/A67C/H239E, PDB: 6ISS) capable of strengthening the helix-loop interactions under acidic conditions. This variant retained excellent thermostability at pH 2.5 with a 10-fold increase in t1/2 (2.52 h at 25 °C) compared with that of the native enzyme. X-ray crystallography analysis showed that the recombinant LiPH8 variant is the only unique lignin peroxidase containing five disulfide bridges, and the helix-loop interactions of the synthetic disulfide bridge and ionic salt bridge in its structure are responsible for stabilizing the Ca2+-binding region and heme environment, resulting in an increase in overall structural resistance against acidic conditions. Our work will allow the design of biocatalysts for ligninolytic enzyme engineering and for efficient biocatalytic degradation of plant biomass in lignocellulose biorefineries.


Assuntos
Dissulfetos , Peroxidases , Biocatálise , Biomassa , Lignina/metabolismo , Peroxidases/genética , Peroxidases/metabolismo
5.
Biotechnol Biofuels ; 14(1): 108, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926536

RESUMO

BACKGROUND: Lignin peroxidases catalyze a variety of reactions, resulting in cleavage of both ß-O-4' ether bonds and C-C bonds in lignin, both of which are essential for depolymerizing lignin into fragments amendable to biological or chemical upgrading to valuable products. Studies of the specificity of lignin peroxidases to catalyze these various reactions and the role reaction conditions such as pH play have been limited by the lack of assays that allow quantification of specific bond-breaking events. The subsequent theoretical understanding of the underlying mechanisms by which pH modulates the activity of lignin peroxidases remains nascent. Here, we report on combined experimental and theoretical studies of the effect of pH on the enzyme-catalyzed cleavage of ß-O-4' ether bonds and of C-C bonds by a lignin peroxidase isozyme H8 from Phanerochaete chrysosporium and an acid stabilized variant of the same enzyme. RESULTS: Using a nanostructure initiator mass spectrometry assay that provides quantification of bond breaking in a phenolic model lignin dimer we found that catalysis of degradation of the dimer to products by an acid-stabilized variant of lignin peroxidase isozyme H8 increased from 38.4% at pH 5 to 92.5% at pH 2.6. At pH 2.6, the observed product distribution resulted from 65.5% ß-O-4' ether bond cleavage, 27.0% Cα-C1 carbon bond cleavage, and 3.6% Cα-oxidation as by-product. Using ab initio molecular dynamic simulations and climbing-image Nudge Elastic Band based transition state searches, we suggest the effect of lower pH is via protonation of aliphatic hydroxyl groups under which extremely acidic conditions resulted in lower energetic barriers for bond-cleavages, particularly ß-O-4' bonds. CONCLUSION: These coupled experimental results and theoretical explanations suggest pH is a key driving force for selective and efficient lignin peroxidase isozyme H8 catalyzed depolymerization of the phenolic lignin dimer and further suggest that engineering of lignin peroxidase isozyme H8 and other enzymes involved in lignin depolymerization should include targeting stability at low pH.

6.
Nat Commun ; 10(1): 5123, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719532

RESUMO

Lignin is a major component of lignocellulosic biomass. Although it is highly recalcitrant to break down, it is a very abundant natural source of valuable aromatic carbons. Thus, the effective valorisation of lignin is crucial for realising a sustainable biorefinery chain. Here, we report a compartmented photo-electro-biochemical system for unassisted, selective, and stable lignin valorisation, in which a TiO2 photocatalyst, an atomically dispersed Co-based electrocatalyst, and a biocatalyst (lignin peroxidase isozyme H8, horseradish peroxidase) are integrated, such that each system is separated using Nafion and cellulose membranes. This cell design enables lignin valorisation upon irradiation with sunlight without the need for any additional bias or sacrificial agent and allows the protection of the biocatalyst from enzyme-damaging elements, such as reactive radicals, gas bubbles, and light. The photo-electro-biochemical system is able to catalyse lignin depolymerisation with a 98.7% selectivity and polymerisation with a 73.3% yield using coniferyl alcohol, a lignin monomer.


Assuntos
Fontes de Energia Bioelétrica , Lignina/química , Fotoquímica , Luz Solar , Biopolímeros/biossíntese , Reatores Biológicos , Dimerização , Peróxido de Hidrogênio/análise , Polimerização
7.
Biotechnol Biofuels ; 11: 325, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555531

RESUMO

BACKGROUND: The lignin peroxidase isozyme H8 from the white-rot fungus Phanerochaete chrysosporium (LiPH8) demonstrates a high redox potential and can efficiently catalyze the oxidation of veratryl alcohol, as well as the degradation of recalcitrant lignin. However, native LiPH8 is unstable under acidic pH conditions. This characteristic is a barrier to lignin depolymerization, as repolymerization of phenolic products occurs simultaneously at neutral pH. Because repolymerization of phenolics is repressed at acidic pH, a highly acid-stable LiPH8 could accelerate the selective depolymerization of recalcitrant lignin. RESULTS: The engineered LiPH8 was in silico designed through the structural superimposition of surface-active site-harboring LiPH8 from Phanerochaete chrysosporium and acid-stable manganese peroxidase isozyme 6 (MnP6) from Ceriporiopsis subvermispora. Effective salt bridges were probed by molecular dynamics simulation and changes to Gibbs free energy following mutagenesis were predicted, suggesting promising variants with higher stability under extremely acidic conditions. The rationally designed variant, A55R/N156E-H239E, demonstrated a 12.5-fold increased half-life under extremely acidic conditions, 9.9-fold increased catalytic efficiency toward veratryl alcohol, and a 7.8-fold enhanced lignin model dimer conversion efficiency compared to those of native LiPH8. Furthermore, the two constructed salt bridges in the variant A55R/N156E-H239E were experimentally confirmed to be identical to the intentionally designed LiPH8 variant using X-ray crystallography (PDB ID: 6A6Q). CONCLUSION: Introduction of strong ionic salt bridges based on computational design resulted in a LiPH8 variant with markedly improved stability, as well as higher activity under acidic pH conditions. Thus, LiPH8, showing high acid stability, will be a crucial player in biomass valorization using selective depolymerization of lignin.

8.
Biotechnol Biofuels ; 9: 247, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27872660

RESUMO

BACKGROUND: Although lignin peroxidase is claimed as a key enzyme in enzyme-catalyzed lignin degradation, in vitro enzymatic degradation of lignin was not easily observed in lab-scale experiments. It implies that other factors may hinder the enzymatic degradation of lignin. Irreversible interaction between phenolic compound and lignin peroxidase was hypothesized when active enzyme could not be recovered after the reaction with degradation product (guaiacol) of lignin phenolic dimer. RESULTS: In the study of lignin peroxidase isozyme H8 from white-rot fungi Phanerochaete chrysosporium (LiPH8), W251 site was revealed to make the covalent coupling with one moiety of monolignolic radical (guaiacol radical) by LC-MS/MS analysis. Hypothetical electron-relay containing W251 residue was newly suggested based on the observation of repressed radical coupling and remarkably lower electron transfer rate for W215A mutant. Furthermore, the retardation of the suicidal radical coupling between the W251 residue and the monolignolic radical was attempted by supplementing the acidic microenvironment around the W251 residue to engineer radical-robust LiPH8. Among many mutants, mutant A242D showed exceptional catalytic performances by yielding 21.1- and 4.9-fold higher increases of kcat and kcat/KM values, respectively, in the oxidation of non-phenolic model lignin dimer. CONCLUSIONS: A mechanism-based suicide inhibition of LiPH8 by phenolic compounds was firstly revealed and investigated in this work. Radical-robust LiPH8 was also successfully engineered by manipulating the transient radical state of radical-susceptible electron-relay. Radical-robust LiPH8 will play an essential role in degradation of lignin, which will be consequently linked with improved production of sugars from lignocellulose biomass.

9.
Enzyme Microb Technol ; 66: 74-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25248703

RESUMO

Free-hydroxyl phenolic units can decrease or even abort the catalytic activity of lignin peroxidase H8 during oxidation of veratryl alcohol and model lignin dimers, resulting in slow and inefficient lignin degradation. In this study we applied engineered 4-O-methyltransferase from Clarkia breweri to detoxify the inhibiting free-hydroxyl phenolic groups by converting them to methylated phenolic groups. The multistep, enzyme-catalyzed process that combines 4-O-methyltransferase and lignin peroxidase H8 suggested in this work can increase the efficiency of lignin-degradation. This study also suggests approaching the field of multi-enzyme in vitro systems to improve the understanding and development of plant biomass in biorefinery operations.


Assuntos
Clarkia/enzimologia , Lignina/metabolismo , Metiltransferases/metabolismo , Peroxidases/metabolismo , Phanerochaete/enzimologia , Álcoois Benzílicos/metabolismo , Biodegradação Ambiental , Biomassa , Clarkia/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Metiltransferases/genética , Peroxidases/genética , Phanerochaete/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Protein Expr Purif ; 80(2): 268-73, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21856428

RESUMO

Cationic cell wall peroxidase (CWPO_C) from poplar tree (Populus alba L) was heterologously expressed in Escherichia coli as an inclusion body. The insoluble inclusion body was solubilized and reactivated via a refolding procedure. The condition for this procedure was optimized by varying the refolding pH, and the concentrations of the oxidizing agent (GSSG), denaturing agent (GndCl), and hemin, respectively. The optimal conditions for refolding CWPO_C were 100 mM Tris-HCl at pH 8.5, 0.6mM GSSG, 5 µM hemin, 0.6 M GndCl and 5 mM CaCl2. The fact that the absorbance spectrum was identical to that of wild CWPO_C from poplar tree suggests that the protein folding, heme insertion and iron coordination were correctly archived. The binding affinity and turnover rate values of refolded CWPO_C were compared with those of HRP_C. k(cat)/K(m) for sinapyl alcohol of CWPO_C was over 170 times higher than that of HRP_C, on the while k(cat)/K(m) for coniferyl alcohol showed similar values for both peroxidase. The kinetic parameters showed that refolded CWPO_C possesses a very unique property of S-peroxidase, preferentially oxidizes sinapyl alcohol rather than coniferyl alcohol. The successful expression of CWPO_C in E. coli provides a valuable tool to elucidate the structure and functional relationship of S-peroxidase, which plays an important role in the lignification of angiosperm woody plant cell walls.


Assuntos
Escherichia coli/metabolismo , Peroxidase/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Populus/enzimologia , Redobramento de Proteína , Benzotiazóis/metabolismo , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Dissulfeto de Glutationa/metabolismo , Hemina/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Concentração de Íons de Hidrogênio , Corpos de Inclusão/enzimologia , Oxirredução , Peroxidase/genética , Peroxidase/metabolismo , Fenóis/metabolismo , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Ligação Proteica , Solubilidade , Ácidos Sulfônicos/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...