Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 895: 165145, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385491

RESUMO

Microplastics (MPs), which are ubiquitous, are no longer novel emerging pollutants, yet our knowledge of them is insufficient. This study investigates the prevalence of MPs and trace metals in sediment belonging to Ma River, Vietnam, and their interaction with various parameters, including nutrients such as total carbon (TC), total nitrogen (TN), and total phosphorus (TP), grain sizes, and MPs in surface water. The study revealed that the abundance of MPs in sediment (MPs/S) is relatively high (i.e., 1328.3 ± 1925.5 items.kg-1 dry weight), while the concentration of MPs in surface water (MPs/W) was relatively low (i.e., 57.3 ± 55.8 items.m-3) compared to other areas. Notably, the study found that arsenic and cadmium concentrations exceeded baseline levels, indicating their anthropogenic origin. To interpret the relationship between MPs/S, metals, and the aforementioned parameters, principal component analysis and Pearson correlation analyses were employed. The results demonstrated a significant correlation between metals and nutrients, as well as small grain sizes such as clay and silt. It was observed that the majority of metals displayed co-occurrence with one another but showed weak associations with the levels of MPs present in both water and sediment. Additionally, a weak correlation was observed between MPs/W and MPs/S. In conclusion, these findings suggest that the distribution and behavior of MPs and trace metals in aquatic systems are influenced by multiple factors, including nutrient levels, grain size, and other chemical and physical characteristics of the environment. While certain metals may have natural sources, others may result from human activities such as mining, industrial discharge, and wastewater treatment plants. As a result, understanding the sources and aspects of metal contamination are critical for determining their relationship with MPs and developing effective strategies for mitigating their impact on aquatic ecosystems.

2.
Environ Sci Pollut Res Int ; 29(27): 41261-41271, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35089513

RESUMO

Heavy metals contamination in sediments may endanger ecosystems and human health via the food chain. In fact, there is little to no understanding about heavy metal accumulation in surface sediment of one of the most economically important marine bodies for Vietnam, the Thai Binh Coast, where five large rivers co-discharge into the Gulf of Tonkin. Twenty-seven surface sediment samples were collected from the intertidal regions and analyzed for: arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), and zinc (Zn) using inductively coupled plasma mass spectroscopy (ICP-MS). The studied area exhibited a large spatial variation in the concentration of heavy metals, e.g., the dry sediment concentration of Cd was the least (0.05-0.49 mg.kg-1), whereas that of Zn was the greatest (45.4-252 mg.kg-1). Based on the geoaccumulation index ([Formula: see text]), most of the studied heavy metals were accumulated at low pollution levels, except four locations exhibited moderately and highly polluted levels of Hg with [Formula: see text] Hg values from 1.92 to 2.66. However, the high contamination factor value implicated that not only Hg but also all other detected heavy metals in this area resulted from anthropogenic activities along the coast and the river upstream. This implied the need for quick action from the government. In addition, numerous analytical methods were used to see the association between metals, total organic carbon (TOC), and particle size distribution, including Pearson correlation coefficient (P) and principal component analysis (PCA). Hg demonstrates lowest connection with TOC (PHg-TOC ~ 0) but individual heavy metal correlations are largely positive, with many reaching 1.0 (e.g., PNi-Cr = 0.89, PCd-As = 0.72, PNi-Cu = 0.76, and PCu-Cr = 0.72). From the PCA diagram, we can observe that those sampling points in the positive direction of PC1 were expected to have a high concentration of Cu, Zn, As, Ni while having extremely little sand content.


Assuntos
Arsênio , Mercúrio , Metais Pesados , Poluentes Químicos da Água , Arsênio/análise , Cádmio/análise , China , Cromo/análise , Ecossistema , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Humanos , Mercúrio/análise , Metais Pesados/análise , Compostos Orgânicos , Medição de Risco , Rios/química , Tailândia , Vietnã , Poluentes Químicos da Água/análise
3.
Membranes (Basel) ; 11(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34436391

RESUMO

UiO-66 nanoparticles are considered highly potential fillers for the application in desalination membranes. In this study, UiO-66 nanoparticles were anchored to PES membrane substrates, which were subsequently subjected to the interfacial polymerization reaction to coat a layer of polyamide (PA) on their surface. For comparison, a blank membrane incorporating no UiO-66 and a reference membrane incorporating ZrO2 (instead of UiO-66) were prepared. All prepared membranes were tested for their desalination performance. The membranes containing UiO-66 were found to outperform the blank and the reference counterparts. The reason for this outperformance is possibly attributed to the hydrophilicity of UiO-66 nanoparticles and the presence of nanochannels in their structure.

4.
RSC Adv ; 11(57): 36078-36088, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35492758

RESUMO

Nanosized zinc oxide is an intriguing material that can be applied in various fields. In this study, Ce doped ZnO nano-catalysts (Ce-ZnO) were synthesized by two different methods (i.e., hydrothermal (Ce-ZnO-HT) and polymer gel combustion (Ce-ZnO-CB) methods) to compare their photodegradation efficiency. The prepared material characteristics were investigated using XRD, SEM, TEM, FTIR, UV-Vis, PL, XPS, EDS, and BET. The bandgap of both nanoparticles (NPs) was 2.95 eV, despite the fact that the morphology of Ce-ZnO-HT NPs was 1D-rod-shaped and that of Ce-ZnO-CB NPs was 0D-spherical. However, the surface area and oxygen vacancy rate of Ce-ZnO-HT NPs were higher than those of Ce-ZnO-CB NPs. These differences are directly related to the photocatalytic activity of Ce-ZnO NPs. Accordingly, the results showed that photocatalytic efficiency was classified in the order Ce-ZnO-HT > Ce-ZnO-CB > pure ZnO, and the photocatalytic reaction rate constant of Ce-ZnO-HT used to decompose MB was 3.0 times higher than that of Ce-ZnO-CB. Interestingly, the photodegradation mechanism study revealed that hydroxyl radicals and holes were shown to be more important contributors to methyl blue degradation than photo-induced electrons and superoxide radical ions.

5.
Org Biomol Chem ; 13(21): 6047-58, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25947884

RESUMO

The cyclization of 2,3-dihalopyridines with readily available imines provides a convenient and regioselective approach to 4- and 7-azaindoles. The regioselectivity can be controlled by the choice of the halogen atoms at the pyridine ring (chlorine versus bromine).


Assuntos
Iminas/química , Indóis/síntese química , Paládio/química , Piridinas/química , Catálise , Ciclização , Halogenação , Iminas/síntese química , Indóis/química , Modelos Moleculares , Piridinas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA