Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 8(2): e2300431, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37349857

RESUMO

The facile synthesis and beneficial properties of tin oxide have driven the development of efficient planar perovskite solar cells (PSCs). To increase the PSC performance, alkali salts are used to treat the SnO2 surface to minimize the defect states. However, the underlying mechanism of alkali cations' role in the PSCs needs further exploration. Herein the effect of alkali fluoride salts (KF, RbF, and CsF) on the properties of SnO2 and PSC performance is investigated. The results show different alkali have significant roles depending on their nature. Larger cations Cs+ preferably locate at the SnO2 film surface to passivate surface defects and enhance conductivity, while smaller cations like Rb+ or K+ cations tend to diffuse into the perovskite layer to reduce trap density of the material. The former effect leads to enhanced fill factor while the latter effect increases the open circuit voltage of the device. It is then demonstrated that a dual cation post-treatment of the SnO2 layer with RbF and CsF achieves PSC with a significantly higher power conversion efficiency (PCE) of 21.66% compared to pristine PSC with a PCE of 19.71%. This highlights the significance of defect engineering of SnO2 using selective multiple alkali treatment to improve PSC performance.

2.
Int J Radiat Biol ; 100(2): 209-219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37819928

RESUMO

PURPOSE: The study aimed to protect patients' skin against ionizing irradiation during radiotherapy by using astaxanthin-encapsulated nanostructured lipid carriers (NLC-ATX). MATERIALS AND METHODS: NLC-ATX was prepared by a combined method of hot homogenization and sonication. Cytotoxicity of NLC-ATX was evaluated by MTT colorimetric assay. The in vitro radioprotection of NLC-ATX for human fibroblast (HF) cells was investigated based on the level of ROS (reactive oxygen species), DNA damage, and cell death caused by X-irradiation. In addition, the in vivo radioprotection was evaluated based on the appearance and histological structure of the irradiated skin. RESULTS: NLC-ATX was successfully prepared, with a mean particle size, zeta potential, and encapsulation efficiency of 114.4 nm, -34.1 mV, and 85.67%, respectively. Compared to the control, NLC-ATX, at an optimum ATX concentration under in vitro condition, reduced the amount of generated ROS and DNA damage of 81.6% and 41.6%, respectively, after X-radiation, resulting in a significant decrease in cell death by 62.69%. Under in vivo condition, after the 9th day of X-irradiation (equivalent to an accumulated dose of 14 Gy), the dorsal skin of five out of six NLC-ATX-untreated mice exhibited grade-1 skin damage, according to CTCAE v5.0, while treatment with NLC-ATX protected 6/6 mice from acute skin damage. Moreover, on the 28th day after the first X-irradiation, the histological images illustrated that NLC-ATX at an ATX concentration of 0.25 µg/mL exhibited good recovery of the skin, with barely any difference noted in the collagen fibers and sebaceous glands compared to normal skin. CONCLUSIONS: NLC-ATX shows potential for application in skin protection against adverse effects of ionizing rays during radiotherapy.


Assuntos
Portadores de Fármacos , Pele , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Portadores de Fármacos/química , Pele/metabolismo , Lipídeos , Tamanho da Partícula , Xantofilas
3.
Radiat Prot Dosimetry ; 200(3): 221-228, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-37807769

RESUMO

This study aims to establish baseline micronucleus (MN) frequencies from various populations of residents in Vietnam and develop a 60Co dose-response curve for the cytokinesis-block micronucleus (CBMN) assay. Blood samples were exposed in vitro to a 60Co source at a dose rate of 275 mGy per min in a range of 0.1 to 4.0 Gy. MN background frequencies were 4.5 ± 3.2, 7.3 ± 4.6, 7.0 ± 3.8 and 13.1 ± 6.7 in 1000 binucleated (BN) cells for 96 healthy donors, 22 male radiation workers and 12 breast cancer patients, respectively. Blood samples from three healthy donors were used to generate the MN dose-response curve: y = C + (0.0496 ± 0.0069)D + (0.0143 ± 0.0026)D2. This curve was verified through an inter-laboratory comparison (RENEB ILC 2021). Our findings highlight the significance of the CBMN assay as an additional essential tool for biodosimetry in Vietnam.


Assuntos
Radioisótopos de Cobalto , Citocinese , Humanos , Masculino , Testes para Micronúcleos , Vietnã , Linfócitos
4.
J Microencapsul ; 40(8): 613-629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37815151

RESUMO

This study aims to evaluate the radioprotective effects of liposomes encapsulating curcumin (Lip-CUR), silibinin (Lip-SIL), α-tocopherol (Lip-TOC), quercetin (Lip-QUE) and resveratrol (Lip-RES) in alleviating the adverse effects of ionising irradiation on human lymphoctyes and skin cells in radiotherapy. Liposomes encapsulating the above natural radioprotectants (Lip-NRPs) were prepared by the film hydration method combined with sonication. Their radioprotective effects for the cells against X-irradiation was evaluated using trypan-blue assay and γ-H2AX assay. All prepared Lip-NRPs had a mean diameter less than 240 nm, polydispersity index less than 0.32, and zeta potential more than -23 mV. Among them, the radioprotective effect of Lip-RES was lowest, while that of Lip-QUE was highest. Lip-SIL also exhibited a high radioprotective effect despite its low DPPH-radical scavenging activity (12.9%). The radioprotective effects of Lip-NRPs do not solely depend on the free radical scavenging activity of NRPs but also on their ability to activate cellular mechanisms.


Assuntos
Curcumina , Lipossomos , Humanos , Resveratrol , Pele , Curcumina/farmacologia , Linfócitos
5.
ACS Appl Mater Interfaces ; 13(4): 5752-5761, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33470096

RESUMO

A stable and efficient carrier transfer is a prerequisite for high-performance perovskite solar cells. With optimized additives, a significantly improved charge carrier transfer can be achieved at the interface of perovskite/2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,90-spirobifluorene (Spiro-OMeTAD) with significantly boosted photostability. Using time-dependent spectroscopic techniques, we investigated charge carrier and mobile-ion dynamics at the perovskite/Spiro-OMeTAD interface, where the Spiro-OMeTAD contains different bis(trifluoromethanesulfonyl)imide (TFSI) salts additives (Li-TFSI, Mg-TFSI2, Ca-TFSI2). The pristine response and the dynamic changes under continuous illuminations are presented, which is correlated to the different behaviors of mobile-ion accumulations at the perovskite/Spiro interface and ascribed to the improved hole mobilities in Spiro-OMeTAD, ultimately contributing to the favorable behaviors in solar cells. It is demonstrated that the hole mobility and conductivity of hole transport layers play an important role in suppressing mobile-ion accumulation at the interfaces of solar cells. With the engineering of mixed-cation mixed-halide perovskite, optimal engineering of additives in hole transport materials is an efficient strategy. Therefore, it should be emphasized for accelerating perovskite photovoltaic commercialization.

6.
Int J Radiat Biol ; 96(11): 1492-1503, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32910711

RESUMO

PURPOSE: Inhomogeneous exposures to ionizing radiation can be detected and quantified with the dicentric chromosome assay (DCA) of metaphase cells. Complete automation of interpretation of the DCA for whole-body irradiation has significantly improved throughput without compromising accuracy, however, low levels of residual false positive dicentric chromosomes (DCs) have confounded its application for partial-body exposure determination. MATERIALS AND METHODS: We describe a method of estimating and correcting for false positive DCs in digitally processed images of metaphase cells. Nearly all DCs detected in unirradiated calibration samples are introduced by digital image processing. DC frequencies of irradiated calibration samples and those exposed to unknown radiation levels are corrected subtracting this false positive fraction from each. In partial-body exposures, the fraction of cells exposed, and radiation dose can be quantified after applying this modification of the contaminated Poisson method. RESULTS: Dose estimates of three partially irradiated samples diverged 0.2-2.5 Gy from physical doses and irradiated cell fractions deviated by 2.3%-15.8% from the known levels. Synthetic partial-body samples comprised of unirradiated and 3 Gy samples from 4 laboratories were correctly discriminated as inhomogeneous by multiple criteria. Root mean squared errors of these dose estimates ranged from 0.52 to 1.14 Gy2 and from 8.1 to 33.3%2 for the fraction of cells irradiated. CONCLUSIONS: Automated DCA can differentiate whole- from partial-body radiation exposures and provides timely quantification of estimated whole-body equivalent dose.


Assuntos
Análise Citogenética , Exposição à Radiação/análise , Radiometria/métodos , Automação , Humanos , Distribuição de Poisson
7.
ACS Appl Mater Interfaces ; 12(5): 6651-6661, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31918551

RESUMO

Perovskite solar cells (PSCs) have achieved unprecedented progress in terms of enhancement of power conversion efficiency (PCE). Nevertheless, device stability is still an obstacle to the commercialization of this emerging photovoltaic technology. Though strategies such as compositional management and ligand engineering have been reported to tackle this critical issue, these methods often have drawbacks such as compromised device performance. Herein, we propose an approach combining material dimensionality control and interfacial passivation by a post-device treatment via triethylenetetramine (TETA) vapor to enhance both efficiency and stability of Cs0.05FA0.79MA0.16PbI2.5Br0.5-based PSCs. Results of X-ray diffraction and scanning electron microscopy show the formation of low-dimensional perovskites at the interface between the perovskite film and the hole transporting layer after the TETA vapor treatment. Measurements of the energy level alignment and electrochemical properties by ultraviolet photoelectron spectroscopy and impedance spectra confirm the reduced density of trap states and improved interfacial charge transport. Consequently, TETA-based treatment significantly enhances both efficiency (from 17.07 to 18.03%) and stability (PCE retention from 73.4 to 88.9%) of the PSCs under >65% relative humidity for 1000 h compared to the controlled device without TETA treatment. Furthermore, the TETA vapor also shows an advantageous effect of dramatically improving the performance of PSC devices, which initially had poor performance (from 6.8 to 10.5%) through surface defect passivation.

8.
Small ; 16(12): e1901466, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31131987

RESUMO

Nanostructured tin (IV) oxide (SnO2 ) is emerging as an ideal inorganic electron transport layer in n-i-p perovskite devices, due to superior electronic and low-temperature processing properties. However, significant differences in current-voltage performance and hysteresis phenomena arise as a result of the chosen fabrication technique. This indicates enormous scope to optimize the electron transport layer (ETL), however, to date the understanding of the origin of these phenomena is lacking. Reported here is a first comparison of two common SnO2 ETLs with contrasting performance and hysteresis phenomena, with an experimental strategy to combine the beneficial properties in a bilayer ETL architecture. In doing so, this is demonstrated to eliminate room-temperature hysteresis while simultaneously attaining impressive power conversion efficiency (PCE) greater than 20%. This approach highlights a new way to design custom ETLs using functional thin-film coatings of nanomaterials with optimized characteristics for stable, efficient, perovskite solar cells.

9.
ACS Appl Mater Interfaces ; 11(31): 28431-28441, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31311262

RESUMO

A carbon electrode with low cost and high stability exhibited competitiveness for its practical application in organic-inorganic hybrid perovskite solar cells (PSCs). Nonetheless, issues such as poor interface contact with an adjacent perovskite layer and obvious hysteresis phenomenon are bottlenecks that need to be overcome to make carbon-based PSCs (C-PSCs) more attractive in practice. Herein, we report an effective method to enhance the interfacial charge transport of C-PSCs by introducing the CuSCN material into the device. Two types of CuSCN-assisted devices were studied in this work. One was based on the deposition of an ultrathin CuSCN layer between the perovskite absorber layer and the carbon cathode (PSK/CuSCN/C), and the other was by infiltrating CuSCN solution into the carbon film (PSK/C-CuSCN) by taking advantage of the macroporous structure of the carbon. We have found that the CuSCN incorporation by both methods can effectively address the hysteretic feature in planar C-PSCs. The origin for the hysteresis evolution was unraveled by the investigation of the energy alignment and the kinetics of interfacial charge transfer and hole trap-state density. The results have shown that both types of CuSCN-containing devices showed improved interfacial charge carrier extraction, suppressed carrier recombination, reduced trap-state density, and enhanced charge transport, leading to negligible hysteresis. Furthermore, the CuSCN-incorporated C-PSCs demonstrated enhanced device stability. The power conversion efficiency remained 98 and 91% of the initial performance (13.6 and 13.4%) for PSK/CuSCN/C and PSK/C-CuSCN, respectively, after being stored under a high humidity (75-85%) environment for 10 days. The devices also demonstrated extraordinary long-term stability with a negligible performance drop after being stored in air (relative humidity: 33-35%) for 90 days.

10.
Int J Radiat Biol ; 95(3): 307-313, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30481092

RESUMO

PURPOSE: The purposes of this study are to investigate spontaneous dicentric frequencies and dose-response curves of dicentrics induced by gamma 60Co for replenishing the data sets used for biodosimetry in Vietnam. MATERIALS AND METHODS: One hundred and four healthy donor blood samples were collected for chromosome aberrations background study, 03 healthy donor blood samples were used for generating the dose-response curves at 1.96 mGy/min and 275 mGy/min. Blood collection, in vitro irradiation, cell culture and harvest, slide preparation and metaphase scoring were performed according to IAEA standard protocol (2011). Blind exposed samples were scored for verifying each curve. RESULTS: The dicentric, fragment and chromatid break frequencies in 106,310 metaphases of 104 donors were 0.023% ± 0.005%, 0.045% ± 0.007% and 0.101% ± 0.011%, respectively. The dose-response curve for low-dose rate was y = C + (0.0137 ± 0.0055)D + (0.0912 ± 0.0142)D2 and for high-dose rate was y = C + (0.0337 ± 0.0046)D + (0.0539 ± 0.0031)D2, where both of them were verified. CONCLUSION: The data of this study were established for biological dose assessment in cases with low LET of accidental or occupational radiation exposures in the dose range of 0.1-5.0 Gy.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Radioisótopos de Cobalto/efeitos adversos , Análise Citogenética , Raios gama/efeitos adversos , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Radiometria/métodos , Adulto , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vietnã
11.
ChemSusChem ; 11(18): 3096-3103, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30027689

RESUMO

This work demonstrates the effect of oxygen vacancies in SnOx thin films on the performance of perovskite solar cells. Various SnOx films with different amounts of oxygen vacancies were deposited by sputtering at different substrate temperatures (25-300 °C). The transmittance of the films decreased from 82 to 66 % with increasing deposition temperature from 25 to 300 °C. Both X-ray photoelectron spectroscopy and electron-spin resonance spectroscopy confirmed that a higher density of oxygen vacancies was created within the SnOx film at a high substrate temperature, which caused narrowing of the SnOx bandgap from 4.1 (25 °C) to 3.74 eV (250 °C). Combined ultraviolet photoelectron spectroscopy and UV/Vis spectroscopy showed an excellent conduction band position alignment between the methylammonium lead iodide perovskite layer (3.90 eV) and the SnOx electron transport layer deposited at 250 °C (3.92 eV). As a result, a significant enhancement of the open-circuit voltage from 0.82 to 1.0 V was achieved, resulting in an increase of the power conversion efficiency of the perovskite solar cells from 11 to 14 %. This research demonstrated a facile approach for controlling the amount of oxygen vacancies in SnOx thin films to achieve a desirable energy alignment with the perovskite absorber layer for enhanced device performance.

12.
J Phys Chem Lett ; 9(8): 2113-2120, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29638131

RESUMO

Organic-inorganic hybrid lead halide perovskite solar cells have demonstrated competitive power conversion efficiency over 22%; nevertheless, critical issues such as unsatisfactory device stability, serious current-voltage hysteresis, and formation of photo nonactive perovskite phases are obstacles for commercialization of this photovoltaics technology. Herein we report a facial yet effective method to hinder formation of photoinactive δ-FAPbI3 and hysteresis behavior in planar heterojunction perovskite solar cells based on K x(MA0.17FA0.83)1- xPbI2.5Br0.5 (0≤ x ≤ 0.1) through incorporation of potassium ions (K+). X-ray diffraction patterns demonstrate formation of photoinactive δ-FAPbI3 was almost completely suppressed after K+ incorporation. Density functional theory calculation shows K+ prefers to enter the interstitial sites of perovskite lattice, leading to chemical environmental change in the crystal structure. Ultrafast transient absorption spectroscopy has revealed that K+ incorporation leads to enhanced carrier lifetime by 50%, which is also confirmed by reduced trap-assisted recombination of the perovskite solar cells containing K+ in photovoltage decay. Ultraviolet photoelectron spectroscopy illustrates that K+ incorporation results in a significant rise of conduction band minimum of the perovskite material by 130 meV, leading to a more favorable energy alignment with electron transporting material. At the optimal content of 3% K+ (molar ratio, relative to the total monovalent cations), nearly hysteresis-free, enhanced power conversion efficiencies from 15.72% to 17.23% were obtained in this solar cell.

13.
Int J Radiat Biol ; 93(11): 1267-1273, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28903625

RESUMO

PURPOSE: While the radioprotective activity of curcumin against genotoxicity has been well established, its poor oral bioavailability has limited its successful clinical applications. Nanoscale formulations, including liposomes, have been demonstrated to improve curcumin bioavailability. The objective of the present work was (1) to prepare and characterize curcumin-encapsulated liposomes (i.e. size, colloidal stability, encapsulation efficiency, and payload), and (2) subsequently to evaluate their radioprotective activity against genotoxicity in human blood cells caused by Gamma Cobalt-60 irradiation. MATERIALS AND METHODS: The curcumin-encapsulated liposomes were prepared by lipid-film hydration method using commercial phosphatidylcholine (i.e. Phospholipon® 90G). The blood cells were obtained from healthy male donors (n = 3) under an approved ethics protocol. The cell uptake and the radioprotective activity of the curcumin-encapsulated liposomes were characterized by fluorescence microscopy and micronucleus assay, respectively. RESULTS: Nanoscale curcumin-encapsulated liposomes exhibiting good physical characteristics and successful uptake by the human blood cells were successfully prepared. The radioprotective activity of the curcumin-encapsulated liposomes was found to be dependent on the curcumin concentration, where an optimal concentration existed (i.e. 30 µg/mL) independent of the irradiation dose, above which the radioprotective activity had become stagnant (i.e. no more reduction in the micronuclei frequency). CONCLUSIONS: The present results established for the first time the radioprotective activity of curcumin-encapsulated liposomes in human blood cells, which coupled by its well-established bioavailability, boded well for its potential application as a nanoscale delivery system of other radioprotective phytochemicals.


Assuntos
Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/efeitos da radiação , Radioisótopos de Cobalto/efeitos adversos , Curcumina/administração & dosagem , Curcumina/farmacologia , Raios gama/efeitos adversos , Transporte Biológico , Células Sanguíneas/metabolismo , Cápsulas , Curcumina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Lipossomos , Masculino , Protetores contra Radiação/administração & dosagem , Protetores contra Radiação/metabolismo , Protetores contra Radiação/farmacologia
14.
ACS Appl Mater Interfaces ; 8(19): 11904-9, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27120406

RESUMO

Herein we report on integrated photoelectrolysis of water employing organic metal halide (OMH) perovskite material. Generic OMH perovskite material and device architecture are highly susceptible to degradation by moisture and water. We found that decomposition of perovskite devices proceeds by water ingress through pinholes in upper layers and is strongly affected by applied bias/light and electrolyte pH. It was also found that a pinhole-free hole transport layer (HTL) could significantly enhance the stability of the perovskite photoelectrode, thereby extending the photoelectrode lifetime to several tens of minutes, which is an unprecedented record-long operation. Furthermore, a carbon nanotube (CNT)/polymer composite layer was developed that can effectively protect the underlying perovskite layer from electrolyte molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...