Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(12): 3702-3709, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477517

RESUMO

Systematic control and design of solid-state chemical reactions are required for modifying materials properties and in novel synthesis. Understanding chemical dynamics at the nanoscale is therefore essential to revealing the key reactive pathways. Herein, we combine focused ion beam-scanning electron microscopy (FIB-SEM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) to track the migration of sodium from a borate coating to the oxide scale during in situ hot corrosion testing. We map the changing distribution of chemical elements and compounds from 50 to 850 °C to reveal how sodium diffusion induces corrosion. The results are validated by in situ X-ray diffraction and post-mortem TOF-SIMS. We additionally retrieve the through-solid sodium diffusion rate by fitting measurements to a Fickian diffusion model. This study presents a step change in analyzing microscopic diffusion mechanics with high chemical sensitivity and selectivity, a widespread analytical challenge that underpins the defining rates and mechanisms of solid-state reactions.

2.
Small ; 19(50): e2304236, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37616513

RESUMO

Lead mixed-halide perovskites offer tunable bandgaps for optoelectronic applications, but illumination-induced phase segregation can quickly lead to changes in their crystal structure, bandgaps, and optoelectronic properties, especially for the Br-I mixed system because CsPbI3 tends to form a non-perovskite phase under ambient conditions. These behaviors can impact their performance in practical applications. By embedding such mixed-halide perovskites in a glassy metal-organic framework, a family of stable nanocomposites with tunable emission is created. Combining cathodoluminescence with elemental mapping under a transmission electron microscope, this research identifies a direct relationship between the halide composition and emission energy at the nanoscale. The composite effectively inhibits halide ion migration, and consequently, phase segregation even under high-energy illumination. The detailed mechanism, studied using a combination of spectroscopic characterizations and theoretical modeling, shows that the interfacial binding, instead of the nanoconfinement effect, is the main contributor to the inhibition of phase segregation. These findings pave the way to suppress the phase segregation in mixed-halide perovskites toward stable and high-performance optoelectronics.

3.
ACS Appl Mater Interfaces ; 13(6): 7714-7724, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33533613

RESUMO

The microencapsulation technique has been proven as a powerful and flexible tool to design and develop a multifunctional additive for various applications. The significant characteristics of this technique center around the ability to control the release of the core active ingredients by tuning the porosity and the permeability of the shell. However, this original concept has faced a major roadblock in lubricant research since it causes a major breakage of the microcapsules (∼70%) under severe stressed-shearing conditions. The shell fragments generated from such unwanted events significantly influence the friction and wear performances of the counterpart, thus limiting the ongoing research of the microencapsulation technique in tribology. To solve such technical bottlenecks, we develop a new strategy of utilizing the microencapsulation technique which focuses on the smart responsiveness of the shell with the base lubricant and the synergy between the incorporated materials. In this study, the smart-responsive colloidal capsule has been developed based on our proposed concept that demonstrates outstanding performances in improving the lubricity of the conventional melt lubricant (by ∼70%) under hot metal working conditions. An unprecedented oxidation-reduction (by ∼93%) and the first instance of ultralow friction (0.07) at elevated temperatures (880 °C) have been initially achieved. This work opens a new avenue of customizing a multifunctional additive package by utilizing the smart colloidal capsules in lubrication science.

4.
J Colloid Interface Sci ; 589: 242-251, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33460855

RESUMO

HYPOTHESIS: Because they have self-similar low-surface-energy microstructures throughout the whole material block, fabricating superhydrophobic monoliths has been currently a promising remedy for the mechanical robustness of non-wetting properties. Noticeably, porous materials have microstructured interfaces throughout the complete volume, and silanization can make surfaces low-surface-energy. Therefore, the porous structure and surface silane-treatment can be combined to render hydrophilic inorganics into mechanically durable superhydrophobic monoliths. EXPERIMENTS: Superhydrophobic diatomaceous earth pellets were produced by thermal-sintering, followed by a silanization process with octyltriethoxysilane. The durability of superhydrophobicity was evaluated by changes in wetting properties, surface morphology, and chemistry after a systematic abrasion sliding test. FINDINGS: The intrinsic porosity of diatomite facilitated surface silanization throughout the whole sintered pellet, thus producing the water-repelling monolith. The abrasion sliding converted multimodal porosity of the volume to hierarchical roughness of the surface comprised of silanized particles, thereby attaining superhydrophobic properties of high contact angles over 150° and sliding angles below 20°. The tribological properties revealed useful information about the superhydrophobicity duration of the non-wetting monolith against friction. The result enables the application of porous structures in the fabrication of the anti-abrasion superhydrophobic materials even though they are originally hydrophilic.

5.
Langmuir ; 36(27): 7850-7860, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32551658

RESUMO

The present study investigated oxidation reactivity and hot lubricity of a sodium silicate melt at different Na2O/SiO2 ratios under elevated temperature stimulation. Static oxidation prevention was achieved at 920 °C when the Na2O/SiO2 ratio reached 1:3 (trisilicate) and 1:2 (disilicate), but it started to deteriorate in the case of 1:1 (metasilicate). At a high concentration of sodium (metasilicate), a severe corrosion reaction between the melt and oxide took place that resulted in a composite coating on the steel substrate. This high-temperature reaction accelerated the formation of ionic charges from the steel base and promoted oxidation. However, friction and wear reduction is proportional to an increase in the sodium oxide fraction. Metasilicate (1:1) exhibited excellent lubricity under the hot frictional test at 920 °C compared to other lubricants. It was due to the formation of the sodium-saturated surfaces and an amorphous silica layer, which was associated with the high-temperature reactivity of sodium toward the oxide surface. In addition, the NaFeO2-Fe2O3 composite film, as the reaction product of individual sodium charge and oxide, plays a significant role in maintaining the tribofilm stability for metasilicate, which was not present for disilicate. This study advances the understanding of how sodium-containing compounds perform oxidation prevention and generate lubricity at hot rubbed surfaces.

6.
Small ; 16(29): e2001978, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32548963

RESUMO

The discovery of Pickering emulsion templated assembly enables the design of a hybrid colloidal capsule with engineered properties. However, the underlying mechanisms by which nanoparticles affect the mechanical properties of the shell are poorly understood. Herein, in situ mechanical compression on the transmission electron microscope and aberration-corrected scanning transmission microscope are unprecedentedly implemented to study the intrinsic effect of nanoparticles on the mechanical properties of the calcium carbonate (CaCO3 )-decorated silica (SiO2 ) colloidal capsule. The stiff and brittle nature of the colloidal capsule is due to the interfacial chemical bonding between the CaCO3 nanoparticles and SiO2 inner shell. Such bonding strengthens the mechanical strength of the SiO2 shell (166 ± 14 nm) from the colloidal capsule compared to the thicker single SiO2 shell (310 ± 70 nm) from the silica hollow sphere. At elevated temperature, this interfacial bonding accelerates the formation of the single calcium silicate shell, causing shell morphology transformation and yielding significantly enhanced mechanical strength by 30.9% and ductility by 94.7%. The superior thermal durability of the heat-treated colloidal capsule holds great potential for the fabrication of the functional additives that can be applied in the wide range of applications at elevated temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...