Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(11)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36366576

RESUMO

In this study, a novel antimicrobial formula that incorporates Listeria bacteriophage P100 and silver nanoparticles into an alginate matrix was successfully developed. Paper coated with the antimicrobial formula inhibited the growth of Listeria monocytogenes. The effects of alginate concentration on the formation of silver nanoparticles, silver concentration on the infectivity of phages, and of low alginate concentrations on the sustained release of silver and phages were explored. The highest antimicrobial activity of the alginate-silver coating was achieved with an alginate concentration of 1%. Adding phage P100 (109 PFU/mL) into the alginate-silver coating led to a synergic effect that resulted in a 5-log reduction in L. monocytogenes. A bioactive paper was then developed by coating a base paper with the antimicrobial formula at different coating weights, followed by infrared drying. The higher coating weight was a crucial factor for the maintenance of phage infectivity throughout the coating and drying processes. Phages incorporated into the alginate matrix remained functional even after high-temperature infrared drying. Taken together, an optimized coating matrix is critical in improving the antimicrobial performance of bioactive paper as well as maintaining phage infectivity during the paper manufacturing process.


Assuntos
Anti-Infecciosos , Bacteriófagos , Nanopartículas Metálicas , Prata/farmacologia , Contagem de Colônia Microbiana , Antibacterianos/farmacologia , Alginatos
2.
Environ Sci Pollut Res Int ; 28(23): 29037-29045, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31463742

RESUMO

Composting process of residual organic material generates considerable amounts of liquid leachate which contains high organic load. This waste stream can be considered as potential nutrient source to support microbial growth. In the present work, the utilization of compost leachate as fermentation substrate for Bacillus species production was studied. The physicochemical properties of the leachate and two co-substrates (residual yeast and whey permeate) were determined. The characterization of leachate showed that it is a potential source of carbon, but its nitrogen content may limit the bacterial growth. In order to determine a good recipe of culture medium for fermentation of individual strains of Bacillus species, leachate was added with yeast and whey permeate. Raw and diluted leachates with and without amendments were tested in shake-flask fermentation assays. Results showed that Bacillus sp. grew better in diluted leachate than in raw leachate. When co-substrates were added, the growth was improved and the sporulation rate also increased. Since the aim was to produce plant growth-promoting bacteria, one of the objectives of fermentation assays was the production of viable bacteria when Bacillus sp. arrives to soil as component of a fertilizer. For this reason, the obtention of sporulated Bacillus cells was desired. The highest sporulation rate was obtained with co-substrates, inducing more than 89% of vegetative cells to develop spores. This approach of leachate valorization will produce economical benefits reducing the volume of leachate waste to be treated, as well as contribute in a cost-effective production of biological amendments in a circular economy mode.


Assuntos
Inoculantes Agrícolas , Compostagem , Agricultura , Bactérias , Ecossistema , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...