Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 128(1): 42-58, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33135960

RESUMO

RATIONALE: The recent discovery of meningeal lymphatics in mammals is reshaping our understanding of fluid homeostasis and cellular waste management in the brain, but visualization and experimental analysis of these vessels is challenging in mammals. Although the optical clarity and experimental advantages of zebrafish have made this an essential model organism for studying lymphatic development, the existence of meningeal lymphatics has not yet been reported in this species. OBJECTIVE: Examine the intracranial space of larval, juvenile, and adult zebrafish to determine whether and where intracranial lymphatic vessels are present. METHODS AND RESULTS: Using high-resolution optical imaging of the meninges in living animals, we show that zebrafish possess a meningeal lymphatic network comparable to that found in mammals. We confirm that this network is separate from the blood vascular network and that it drains interstitial fluid from the brain. We document the developmental origins and growth of these vessels into a distinct network separated from the external lymphatics. Finally, we show that these vessels contain immune cells and perform live imaging of immune cell trafficking and transmigration in meningeal lymphatics. CONCLUSIONS: This discovery establishes the zebrafish as a important new model for experimental analysis of meningeal lymphatic development and opens up new avenues for probing meningeal lymphatic function in health and disease.


Assuntos
Linfangiogênese , Vasos Linfáticos/fisiologia , Meninges/fisiologia , Microscopia Confocal , Imagem Óptica , Animais , Animais Geneticamente Modificados , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/imunologia , Meninges/imunologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Fator C de Crescimento do Endotélio Vascular/farmacologia , Peixe-Zebra/genética
2.
Commun Biol ; 3(1): 734, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277595

RESUMO

The preferential accumulation of vascular smooth muscle cells (vSMCs) on arteries versus veins during early development is a well-described phenomenon, but the molecular pathways underlying this polarization are not well understood. In zebrafish, the cxcr4a receptor (mammalian CXCR4) and its ligand cxcl12b (mammalian CXCL12) are both preferentially expressed on arteries at time points consistent with the arrival and differentiation of the first vSMCs during vascular development. We show that autocrine cxcl12b/cxcr4 activity leads to increased production of the vSMC chemoattractant ligand pdgfb by endothelial cells in vitro and increased expression of pdgfb by arteries of zebrafish and mice in vivo. Additionally, we demonstrate that expression of the blood flow-regulated transcription factor klf2a in primitive veins negatively regulates cxcr4/cxcl12 and pdgfb expression, restricting vSMC recruitment to the arterial vasculature. Together, this signalling axis leads to the differential acquisition of vSMCs at sites where klf2a expression is low and both cxcr4a and pdgfb are co-expressed, i.e. arteries during early development.


Assuntos
Quimiocinas/metabolismo , Músculo Liso Vascular/citologia , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Camundongos , Mutação , Miócitos de Músculo Liso , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais , Peixe-Zebra
3.
Nat Commun ; 11(1): 1204, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139674

RESUMO

Anti-angiogenic therapies have generated significant interest for their potential to combat tumor growth. However, tumor overproduction of pro-angiogenic ligands can overcome these therapies, hampering success of this approach. To circumvent this problem, we target the resynthesis of phosphoinositides consumed during intracellular transduction of pro-angiogenic signals in endothelial cells (EC), thus harnessing the tumor's own production of excess stimulatory ligands to deplete adjacent ECs of the capacity to respond to these signals. Using zebrafish and human endothelial cells in vitro, we show ECs deficient in CDP-diacylglycerol synthase 2 are uniquely sensitive to increased vascular endothelial growth factor (VEGF) stimulation due to a reduced capacity to re-synthesize phosphoinositides, including phosphatidylinositol-(4,5)-bisphosphate (PIP2), resulting in VEGF-exacerbated defects in angiogenesis and angiogenic signaling. Using murine tumor allograft models, we show that systemic or EC specific suppression of phosphoinositide recycling results in reduced tumor growth and tumor angiogenesis. Our results suggest inhibition of phosphoinositide recycling provides a useful anti-angiogenic approach.


Assuntos
Inibidores da Angiogênese/farmacologia , Endotélio Vascular/metabolismo , Fosfatidilinositóis/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Aloenxertos/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diacilglicerol Colinofosfotransferase/deficiência , Diacilglicerol Colinofosfotransferase/metabolismo , Endotélio Vascular/efeitos dos fármacos , Deleção de Genes , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Knockout , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Especificidade de Órgãos , Transdução de Sinais , Peixe-Zebra
4.
Elife ; 82019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31478836

RESUMO

The post-transcriptional mechanisms contributing to molecular regulation of developmental lymphangiogenesis and lymphatic network assembly are not well understood. MicroRNAs are important post-transcriptional regulators during development. Here, we use high throughput small RNA sequencing to identify miR-204, a highly conserved microRNA dramatically enriched in lymphatic vs. blood endothelial cells in human and zebrafish. Suppressing miR-204 leads to loss of lymphatic vessels while endothelial overproduction of miR-204 accelerates lymphatic vessel formation, suggesting a critical positive role for this microRNA during developmental lymphangiogenesis. We also identify the NFATC1 transcription factor as a key miR-204 target in human and zebrafish, and show that NFATC1 suppression leads to lymphatic hyperplasia. The loss of lymphatics caused by miR-204 deficiency can be largely rescued by either endothelial autonomous expression of miR-204 or by suppression of NFATC1. Together, our results highlight a miR-204/NFATC1 molecular regulatory axis required for proper lymphatic development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Linfangiogênese , MicroRNAs/metabolismo , Fatores de Transcrição NFATC/metabolismo , Animais , Células Endoteliais/fisiologia , Humanos , Peixe-Zebra
5.
Patient Prefer Adherence ; 12: 375-397, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29588576

RESUMO

BACKGROUND: While disease-modifying antirheumatic drugs (DMARDs) are a mainstay of therapy for rheumatoid arthritis (RA), some patients with early RA refuse DMARDs. In anthroposophic medicine (AM), a treatment strategy for early RA without DMARDs has been developed. Preliminary data suggest that RA symptoms and inflammatory markers can be reduced under AM, without DMARDs. PATIENTS AND METHODS: Two hundred and fifty-one self-selected patients aged 16-70 years, starting treatment for RA of <3 years duration, without prior DMARD therapy, participated in a prospective, non-randomized, comparative Phase IV study. C-patients were treated in clinics offering conventional therapy including DMARDs, while A-patients had chosen treatment in anthroposophic clinics, without DMARDs. Both groups received corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs). Primary outcomes were intensity of RA symptoms measured by self-rating on visual analog scales, C-reactive protein, radiological progression, study withdrawals, serious adverse events (SAE), and adverse drug reactions in months 0-48. RESULTS: The groups were similar in most baseline characteristics, while A-patients had longer disease duration (mean 15.1 vs 10.8 months, p<0.0001), slightly more bone destruction, and a much higher proportion of women (94.6% vs 69.7%, p<0.0001). In months 0-12, corticosteroids were used by 45.7% and 81.6% (p<0.0001) and NSAIDs by 52.8% and 68.5% (p=0.0191) of A- and C-patients, respectively. During follow-up, both groups not only had marked reduction of RA symptoms and C-reactive protein, but also some radiological disease progression. Also, 6.2% of A-patients needed DMARDs. Apart from adverse drug reactions (50.4% and 69.7% of A- and C-patients, respectively, p=0.0020), none of the primary outcomes showed any significant between-group difference. CONCLUSION: Study results suggest that for most patients preferring anthroposophic treatment, satisfactory results can be achieved without use of DMARDs and with less use of corticosteroids and NSAIDs than in conventional care. LIMITATION: Because of the non-randomized study design, with A-patients choosing anthroposophic treatment, one cannot infer how this treatment would have worked for C-patients.

6.
Development ; 144(11): 2070-2081, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28506987

RESUMO

The lymphatic vascular system is a hierarchically organized complex network essential for tissue fluid homeostasis, immune trafficking and absorption of dietary fats in the human body. Despite its importance, the assembly of the lymphatic network is still not fully understood. The zebrafish is a powerful model organism that enables study of lymphatic vessel development using high-resolution imaging and sophisticated genetic and experimental manipulation. Although several studies have described early lymphatic development in the fish, lymphatic development at later stages has not been completely elucidated. In this study, we generated a new Tg(mrc1a:egfp)y251 transgenic zebrafish that uses a mannose receptor, C type 1 (mrc1a) promoter to drive strong EGFP expression in lymphatic vessels at all stages of development and in adult zebrafish. We used this line to describe the assembly of the major vessels of the trunk lymphatic vascular network, including the later-developing collateral cardinal, spinal, superficial lateral and superficial intersegmental lymphatics. Our results show that major trunk lymphatic vessels are conserved in the zebrafish, and provide a thorough and complete description of trunk lymphatic vessel assembly.


Assuntos
Sistema Linfático/crescimento & desenvolvimento , Sistema Linfático/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Vasos Linfáticos/metabolismo , Transgenes , Veias/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Mol Cell Biol ; 36(23): 2868-2876, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27601584

RESUMO

ZAP70 [zeta-chain (TCR)-associated protein kinase, 70-kDa], is required for T cell activation. ZAP70 deficiencies in humans and null mutations in mice lead to severe combined immune deficiency. Here, we describe a zap70 loss-of-function mutation in zebrafish (zap70 y442 ) that was created using transcription activator-like effector nucleases (TALENs). In contrast to what has been reported for morphant zebrafish, zap70 y442 homozygous mutant zebrafish displayed normal development of blood and lymphatic vasculature. Hematopoietic cell development was also largely unaffected in mutant larvae. However, mutant fish had reduced lck:GFP + thymic T cells by 5 days postfertilization that persisted into adult stages. Morphological analysis, RNA sequencing, and single-cell gene expression profiling of whole kidney marrow cells of adult fish revealed complete loss of mature T cells in zap70 y442 mutant animals. T cell immune deficiency was confirmed through transplantation of unmatched normal and malignant donor cells into zap70 y442 mutant zebrafish, with T cell loss being sufficient for robust allogeneic cell engraftment. zap70 mutant zebrafish show remarkable conservation of immune cell dysfunction as found in mice and humans and will serve as a valuable model to study zap70 immune deficiency.

9.
Arterioscler Thromb Vasc Biol ; 36(4): 655-62, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26821951

RESUMO

OBJECTIVE: Understanding the mechanisms regulating normal and pathological angiogenesis is of great scientific and clinical interest. In this report, we show that mutations in 2 different aminoacyl-transfer RNA synthetases, threonyl tRNA synthetase (tars(y58)) or isoleucyl tRNA synthetase (iars(y68)), lead to similar increased branching angiogenesis in developing zebrafish. APPROACH AND RESULTS: The unfolded protein response pathway is activated by aminoacyl-transfer RNA synthetase deficiencies, and we show that unfolded protein response genes atf4, atf6, and xbp1, as well as the key proangiogenic ligand vascular endothelial growth factor (vegfaa), are all upregulated in tars(y58) and iars(y68) mutants. Finally, we show that the protein kinase RNA-like endoplasmic reticulum kinase-activating transcription factor 4 arm of the unfolded protein response pathway is necessary for both the elevated vegfaa levels and increased angiogenesis observed in tars(y58) mutants. CONCLUSIONS: Our results suggest that endoplasmic reticulum stress acts as a proangiogenic signal via unfolded protein response pathway-dependent upregulation of vegfaa.


Assuntos
Isoleucina-tRNA Ligase/deficiência , Neovascularização Fisiológica , Treonina-tRNA Ligase/deficiência , Resposta a Proteínas não Dobradas , Proteínas de Peixe-Zebra/deficiência , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Isoleucina-tRNA Ligase/genética , Mutação , Fenótipo , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais , Treonina-tRNA Ligase/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína 1 de Ligação a X-Box , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
10.
Elife ; 5: e11813, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26814702

RESUMO

During embryonic development, cell type-specific transcription factors promote cell identities, while epigenetic modifications are thought to contribute to maintain these cell fates. Our understanding of how genetic and epigenetic modes of regulation work together to establish and maintain cellular identity is still limited, however. Here, we show that DNA methyltransferase 3bb.1 (dnmt3bb.1) is essential for maintenance of hematopoietic stem and progenitor cell (HSPC) fate as part of an early Notch-runx1-cmyb HSPC specification pathway in the zebrafish. Dnmt3bb.1 is expressed in HSPC downstream from Notch1 and runx1, and loss of Dnmt3bb.1 activity leads to reduced cmyb locus methylation, reduced cmyb expression, and gradual reduction in HSPCs. Ectopic overexpression of dnmt3bb.1 in non-hematopoietic cells is sufficient to methylate the cmyb locus, promote cmyb expression, and promote hematopoietic development. Our results reveal an epigenetic mechanism supporting the maintenance of hematopoietic cell fate via DNA methylation-mediated perdurance of a key transcription factor in HSPCs.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Hematopoese/fisiologia , Animais , Expressão Gênica , Loci Gênicos , Metiltransferases/genética , Metiltransferases/metabolismo , Peixe-Zebra
11.
Development ; 143(1): 147-59, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26657775

RESUMO

The cerebral vasculature provides the massive blood supply that the brain needs to grow and survive. By acquiring distinctive cellular and molecular characteristics it becomes the blood-brain barrier (BBB), a selectively permeable and protective interface between the brain and the peripheral circulation that maintains the extracellular milieu permissive for neuronal activity. Accordingly, there is great interest in uncovering the mechanisms that modulate the formation and differentiation of the brain vasculature. By performing a forward genetic screen in zebrafish we isolated no food for thought (nft (y72)), a recessive late-lethal mutant that lacks most of the intracerebral central arteries (CtAs), but not other brain blood vessels. We found that the cerebral vascularization deficit of nft (y72) mutants is caused by an inactivating lesion in reversion-inducing cysteine-rich protein with Kazal motifs [reck; also known as suppressor of tumorigenicity 15 protein (ST15)], which encodes a membrane-anchored tumor suppressor glycoprotein. Our findings highlight Reck as a novel and pivotal modulator of the canonical Wnt signaling pathway that acts in endothelial cells to enable intracerebral vascularization and proper expression of molecular markers associated with BBB formation. Additional studies with cultured endothelial cells suggest that, in other contexts, Reck impacts vascular biology via the vascular endothelial growth factor (VEGF) cascade. Together, our findings have broad implications for both vascular and cancer biology.


Assuntos
Barreira Hematoencefálica/citologia , Encéfalo/embriologia , Circulação Cerebrovascular/genética , Proteínas Ligadas por GPI/genética , Neovascularização Fisiológica/genética , Via de Sinalização Wnt/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Encéfalo/irrigação sanguínea , Linhagem Celular , Circulação Cerebrovascular/fisiologia , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Mutação/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
12.
Development ; 142(17): 2951-61, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26253401

RESUMO

Vessel formation has been extensively studied at the tissue level, but the difficulty in imaging the endothelium with cellular resolution has hampered study of the morphogenesis and behavior of endothelial cells (ECs) in vivo. We are using endothelial-specific transgenes and high-resolution imaging to examine single ECs in zebrafish. By generating mosaics with transgenes that simultaneously mark endothelial nuclei and membranes we are able to definitively identify and study the morphology and behavior of individual ECs during vessel sprouting and lumen formation. Using these methods, we show that developing trunk vessels are composed of ECs of varying morphology, and that single-cell analysis can be used to quantitate alterations in morphology and dynamics in ECs that are defective in proper guidance and patterning. Finally, we use single-cell analysis of intersegmental vessels undergoing lumen formation to demonstrate the coexistence of seamless transcellular lumens and single or multicellular enclosed lumens with autocellular or intercellular junctions, suggesting that heterogeneous mechanisms contribute to vascular lumen formation in vivo. The tools that we have developed for single EC analysis should facilitate further rigorous qualitative and quantitative analysis of EC morphology and behavior in vivo.


Assuntos
Endotélio/citologia , Endotélio/embriologia , Morfogênese , Análise de Célula Única/métodos , Peixe-Zebra/embriologia , Animais , Polaridade Celular , Embrião não Mamífero/citologia , Células Endoteliais/citologia , Endotélio/irrigação sanguínea , Imageamento Tridimensional , Junções Intercelulares , Espaço Intracelular/metabolismo , Fusão de Membrana , Neovascularização Fisiológica , Reprodutibilidade dos Testes , Tronco/irrigação sanguínea , Tronco/embriologia , Vacúolos/metabolismo
13.
Dev Biol ; 390(2): 116-25, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24699544

RESUMO

Initial embryonic determination of artery or vein identity is regulated by genetic factors that work in concert to specify the endothelial cell׳s (EC) fate, giving rise to two structurally unique components of the circulatory loop. The Shh/VEGF/Notch pathway is critical for arterial specification, while the orphan receptor nr2f2 (COUP-TFII) has been implicated in venous specification. Studies in mice have shown that nr2f2 is expressed in venous but not arterial ECs, and that it preferentially induces markers of venous cell fate. We have examined the role of nr2f2 during early arterial-venous development in the zebrafish trunk. We show that expression of a subset of markers of venous endothelial identity requires nr2f2, while the expression of nr2f2 itself requires sox7 and sox18 gene function. However, while sox7 and sox18 are expressed in both the cardinal vein and the dorsal aorta during early trunk development, nr2f2 is expressed only in the cardinal vein. We show that Notch signaling activity present in the dorsal aorta suppresses expression of nr2f2, restricting nr2f2-dependent promotion of venous differentiation to the cardinal vein.


Assuntos
Vasos Sanguíneos/embriologia , Fator II de Transcrição COUP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Receptores Notch/metabolismo , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Fator II de Transcrição COUP/genética , Diferenciação Celular/fisiologia , Clonagem Molecular , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Imuno-Histoquímica , Hibridização In Situ , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição SOXF/genética , Transgenes/genética , Veias/citologia , Veias/embriologia , Proteínas de Peixe-Zebra/genética
14.
Blood ; 120(2): 489-98, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22649102

RESUMO

Understanding the mechanisms that regulate angiogenesis and translating these into effective therapies are of enormous scientific and clinical interests. In this report, we demonstrate the central role of CDP-diacylglycerol synthetase (CDS) in the regulation of VEGFA signaling and angiogenesis. CDS activity maintains phosphoinositide 4,5 bisphosphate (PIP2) availability through resynthesis of phosphoinositides, whereas VEGFA, mainly through phospholipase Cγ1, consumes PIP2 for signal transduction. Loss of CDS2, 1 of 2 vertebrate CDS enzymes, results in vascular-specific defects in zebrafish in vivo and failure of VEGFA-induced angiogenesis in endothelial cells in vitro. Absence of CDS2 also results in reduced arterial differentiation and reduced angiogenic signaling. CDS2 deficit-caused phenotypes can be successfully rescued by artificial elevation of PIP2 levels, and excess PIP2 or increased CDS2 activity can promote excess angiogenesis. These results suggest that availability of CDS-controlled resynthesis of phosphoinositides is essential for angiogenesis.


Assuntos
Diacilglicerol Colinofosfotransferase/metabolismo , Fosfatidilinositóis/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , DNA Complementar/genética , Diacilglicerol Colinofosfotransferase/genética , Humanos , Mutação , Neovascularização Fisiológica/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
15.
Nat Med ; 18(6): 967-73, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22581286

RESUMO

Despite the clear major contribution of hyperlipidemia to the prevalence of cardiovascular disease in the developed world, the direct effects of lipoproteins on endothelial cells have remained obscure and are under debate. Here we report a previously uncharacterized mechanism of vessel growth modulation by lipoprotein availability. Using a genetic screen for vascular defects in zebrafish, we initially identified a mutation, stalactite (stl), in the gene encoding microsomal triglyceride transfer protein (mtp), which is involved in the biosynthesis of apolipoprotein B (ApoB)-containing lipoproteins. By manipulating lipoprotein concentrations in zebrafish, we found that ApoB negatively regulates angiogenesis and that it is the ApoB protein particle, rather than lipid moieties within ApoB-containing lipoproteins, that is primarily responsible for this effect. Mechanistically, we identified downregulation of vascular endothelial growth factor receptor 1 (VEGFR1), which acts as a decoy receptor for VEGF, as a key mediator of the endothelial response to lipoproteins, and we observed VEGFR1 downregulation in hyperlipidemic mice. These findings may open new avenues for the treatment of lipoprotein-related vascular disorders.


Assuntos
Apolipoproteínas B/fisiologia , Lipoproteínas/fisiologia , Neovascularização Fisiológica , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Sequência de Aminoácidos , Animais , Apolipoproteína C-II/fisiologia , Proteínas de Bactérias/genética , Proteínas de Transporte/fisiologia , Células Cultivadas , Humanos , Lipoproteínas LDL/metabolismo , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/análise , Peixe-Zebra
16.
Am J Hum Genet ; 88(6): 718-728, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21596366

RESUMO

Moyamoya is a cerebrovascular angiopathy characterized by a progressive stenosis of the terminal part of the intracranial carotid arteries and the compensatory development of abnormal and fragile collateral vessels, also called moyamoya vessels, leading to ischemic and hemorrhagic stroke. Moyamoya angiopathy can either be the sole manifestation of the disease (moyamoya disease) or be associated with various conditions, including neurofibromatosis, Down syndrome, TAAD (autosomal-dominant thoracic aortic aneurysm), and radiotherapy of head tumors (moyamoya syndromes). Its prevalence is ten times higher in Japan than in Europe, and an estimated 6%-12% of moyamoya disease is familial in Japan. The pathophysiological mechanisms of this condition remain obscure. Here, we report on three unrelated families affected with an X-linked moyamoya syndrome characterized by the association of a moyamoya angiopathy, short stature, and a stereotyped facial dysmorphism. Other symptoms include an hypergonadotropic hypogonadism, hypertension, dilated cardiomyopathy, premature coronary heart disease, premature hair graying, and early bilateral acquired cataract. We show that this syndromic moyamoya is caused by Xq28 deletions removing MTCP1/MTCP1NB and BRCC3. We also show that brcc3 morphant zebrafish display angiogenesis defects that are rescued by endothelium-specific expression of brcc3. Altogether, these data strongly suggest that BRCC3, a deubiquitinating enzyme that is part of the cellular BRCA1 and BRISC complexes, is an important player in angiogenesis and that BRCC3 loss-of-function mutations are associated with moyamoya angiopathy.


Assuntos
Vasos Sanguíneos/anormalidades , Cromossomos Humanos X/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas de Membrana/genética , Doença de Moyamoya/genética , Neovascularização Fisiológica/genética , Animais , Sequência de Bases , Encéfalo/irrigação sanguínea , Enzimas Desubiquitinantes , Face/anormalidades , Feminino , Deleção de Genes , Técnicas de Silenciamento de Genes , Humanos , Masculino , Dados de Sequência Molecular , Doença de Moyamoya/diagnóstico , Doença de Moyamoya/patologia , Linhagem , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas/genética , Peixe-Zebra/anormalidades , Peixe-Zebra/genética
17.
Development ; 138(9): 1705-15, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21429985

RESUMO

The cranial vasculature is essential for the survival and development of the central nervous system and is important in stroke and other brain pathologies. Cranial vessels form in a reproducible and evolutionarily conserved manner, but the process by which these vessels assemble and acquire their stereotypic patterning remains unclear. Here, we examine the stepwise assembly and patterning of the vascular network of the zebrafish hindbrain. The major artery supplying the hindbrain, the basilar artery, runs along the ventral keel of the hindbrain in all vertebrates. We show that this artery forms by a novel process of medial sprouting and migration of endothelial cells from a bilateral pair of primitive veins, the primordial hindbrain channels. Subsequently, a second wave of dorsal sprouting from the primordial hindbrain channels gives rise to angiogenic central arteries that penetrate into and innervate the hindbrain. The chemokine receptor cxcr4a is expressed in migrating endothelial cells of the primordial hindbrain channels, whereas its ligand cxcl12b is expressed in the hindbrain neural keel immediately adjacent to the assembling basilar artery. Knockdown of either cxcl12b or cxcr4a results in defects in basilar artery formation, showing that the assembly and patterning of this crucial artery depends on chemokine signaling.


Assuntos
Vasos Sanguíneos/embriologia , Padronização Corporal/fisiologia , Rombencéfalo/irrigação sanguínea , Rombencéfalo/embriologia , Vertebrados/embriologia , Animais , Animais Geneticamente Modificados , Artérias/embriologia , Artérias/metabolismo , Artérias/fisiologia , Vasos Sanguíneos/metabolismo , Padronização Corporal/genética , Células Cultivadas , Embrião não Mamífero , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Modelos Biológicos , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Rombencéfalo/metabolismo , Troponina T/genética , Troponina T/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Vertebrados/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
18.
Dev Biol ; 318(2): 258-67, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18462713

RESUMO

Aortic arch malformations are common congenital disorders that are frequently of unknown etiology. To gain insight into the factors that guide branchial aortic arch development, we examined the process by which these vessels assemble in wild type zebrafish embryos and in kurzschluss(tr12) (kus(tr12)) mutants. In wild type embryos, each branchial aortic arch first appears as an island of angioblasts in the lateral pharyngeal mesoderm, then elaborates by angiogenesis to connect to the lateral dorsal aorta and ventral aorta. In kus(tr12) mutants, angioblast formation and initial sprouting are normal, but aortic arches 5 and 6 fail to form a lumenized connection to the lateral dorsal aorta. Blood enters these blind-ending vessels from the ventral aorta, distending the arteries and precipitating fusion with an adjacent vein. This arteriovenous malformation (AVM), which shunts nearly all blood directly back to the heart, is not exclusively genetically programmed, as its formation correlates with blood flow and aortic arch enlargement. By positional cloning, we have identified a nonsense mutation in unc45a in kus(tr12) mutants. Our results are the first to ascribe a role for Unc45a, a putative myosin chaperone, in vertebrate development, and identify a novel mechanism by which an AVM can form.


Assuntos
Aorta Torácica/embriologia , Malformações Arteriovenosas/embriologia , Chaperonas Moleculares/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Aorta Torácica/metabolismo , Malformações Arteriovenosas/genética , Malformações Arteriovenosas/metabolismo , Região Branquial/embriologia , Região Branquial/metabolismo , Códon sem Sentido , Regulação da Expressão Gênica no Desenvolvimento , Chaperonas Moleculares/genética , Mutagênese , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
19.
Dev Biol ; 303(2): 772-83, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17125762

RESUMO

Members of the ETS family of transcription factors are among the first genes expressed in the developing vasculature, but loss-of-function experiments for individual ETS factors in mice have not uncovered important early functional roles for these genes. However, multiple ETS factors are expressed in spatially and temporally overlapping patterns in the developing vasculature, suggesting possible functional overlap. We have taken a comprehensive approach to exploring the function of these factors during vascular development by employing the genetic and experimental tools available in the zebrafish to analyze four ETS family members expressed together in the zebrafish vasculature; fli1, fli1b, ets1, and etsrp. We isolated and characterized an ENU-induced mutant with defects in trunk angiogenesis and positionally cloned the defective gene from this mutant, etsrp. Using the etsrp morpholinos targeting each of the four genes, we show that the four ETS factors function combinatorially during vascular and hematopoietic development. Reduction of etsrp or any of the other genes alone results in either partial or no defects in endothelial differentiation, while combined reduction in the function of all four genes causes dramatic loss of endothelial cells. Our results demonstrate that combinatorial ETS factor function is essential for early endothelial specification and differentiation.


Assuntos
Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/genética , Morfogênese/genética , Mutação , Neovascularização Fisiológica/genética , Oligodesoxirribonucleotídeos Antissenso/genética , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
20.
Dev Dyn ; 235(7): 1753-60, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16607654

RESUMO

We identified four mutants in two distinct loci exhibiting similar trunk vascular patterning defects in an F3 genetic screen for zebrafish vascular mutants. Initial vasculogenesis is not affected in these mutants, with proper specification and differentiation of endothelial cells. However, all four display severe defects in the growth and patterning of angiogenic vessels in the trunk, with ectopic branching and disoriented migration of intersegmental vessels. The four mutants are allelic to previously characterized mutants at the fused-somites (fss) and beamter (bea) loci, and they exhibit comparable defects in trunk somite boundary formation. The fss locus has been shown to correspond to tbx24; we show here that bea mutants are defective in the zebrafish dlC gene. Somitic expression of known vascular guidance factors efnb2a, sema3a1, and sema3a2 is aberrantly patterned in fss and bea mutants, suggesting that the vascular phenotype is due to loss of proper guidance cues provided by these factors.


Assuntos
Vasos Sanguíneos/embriologia , Neovascularização Fisiológica/fisiologia , Somitos/citologia , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Padronização Corporal , Embrião não Mamífero , Mutação , Neovascularização Fisiológica/genética , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Somitos/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...